) Nanotec

PLUG & DRIVE

Programming manual for
stepper motor positioning
controls

Valid for firmware version 10.10.2009

NANOTEC ELECTRONIC GmbH & Co. KG Tel. +49 (0)89-900 686-0
Gewerbestrale 11 Fax +49(0)89-900 686-50
D-85652 Landsham near Munich, Germany info@nanotec.com

mailto:info@nanotec.com

\) Nanotec’

PLUG & DRIVE

Editorial

© 2010

Nanotec® Electronic GmbH & Co. KG

Gewerbestralte 11

D-85652 Landsham / Pliening, Germany

Tel.: +49 (0)89-900 686-0

Fax: +49 (0)89-900 686-50

Internet: www.nanotec.com

All rights reserved!

MS Windows 98/NT/ME/2000/XP are registered trademarks of the Microsoft Corporation.

Version/Change overview

Version Date Changes

V1.0 2009-02-10 | Command reference created (firmware version
04.12.2008)

V2.0 2009-12-11 | Instruction sets (firmware version 10.10.2009),
supplemented by Java programming and COM interface
programming, hence renamed as “Programming Manual”

V2.1 2010-01-28 | Instruction sets

V2.2 2010-02-11 | Jerkfree ramp instruction set

V2.3 2010-04-08 | New notice: Java program and serial communication
possible at the same time

Programming manual

Nanote Valid for firmware version 10.10.2009
About this manualAbout this manual

Issue: V 2.3 3

\Y) Nanotec’

PLUG & DRIVE

Contents

=0 L1 o] g = | TP PP PP PP PPPPPRPPPPP 2
1070] 1 (=T o | £SO PP PP PPPPTPURRPT 4
1 ADOUL IS MANUAL ...t snneens 9
2 Command reference of the Nanotec firmwareccococee e 10
21 General INFOrMALION.oiiii e 10
211 1070] o ¢ 00 E=T oo I (U o (1] (TSR PPR 10
21.2 Long command fOrMEALouueiiiiiiee e e 11
2.2 COMMANG OVEIVIEW ...ttt ettt e e e e bt e e e e st e e e e anb e e e e anbeee e e anbreeeeennes 13
23 Read COMMANG ...ttt et e s e e s eabe e e e e nneeas 16
24 L= oo £ [PRSPPI 17
25 GENEral COMMEBNAS ...t bt e e s e bt e s et e e e aneas 18
251 Setting the Phase CUITENT..........ooi e e e e 18
252 Setting the phase current at @ standstill..............ooceieiiiii e 18
253 Setting the StEP MOAEooi e e s e e e 19
254 Setting the MOTOr AdArESSvveiiii e a e 19
255 Setting the MOTOr MOE..........viiiiiiee e e e e 20
2.5.6 Setting the limit SWItCh DENAVIOr............ovieiiii e 21
257 Setting the [IMit SWItCh tyPe......coooiiii e 22
258 Setting the SteP ANlooo i e 22
259 Setting the error correction MOEoiiiiiiii e 23
2.5.10 Setting the record for auto COrTECtioN...........ocuiiiiiiiiiii e 23
2.5.11 Setting the encoder dIrECHONuiii i e 24
2.5.12 Setting the SettliNg tIME.....coo i e e 24
2513 Setting the maximum encoder deviation.............ooocivii i 25
2514 Resetting the pOSItion ©ITOr.... ... e 25
2.5.15 Reading out the error MEMOTY ... e e e e e e e 26
2.5.16 Reading out the encoder POSITIONcoeiiiiiiiieee e 27
2517 Reading out the POSItIONooiiiiiiie e e a e 27
2518 Resetting the POSItION.oi e 28
2519 Request “Motor is referenced” ... 28
2.5.20 Reading out the Motor address.o e 28
2.5.21 Reading out the STAtUSeiiii e 29
2.5.22 Reading out the firmware VEISION ... e 30
2.5.23 Reading out the firmware version (O1d) ... 30
25.24 Masking and demasking the INPULS........ccooi e 31
2.5.25 Reversing the polarity of the inputs and oUtPULS.............coeviiiiiiiiiiii e, 32
2.5.26 Setting the debounce time for the INPULSoooiiiiiiii e 32
2.5.27 Setting the OUIPULSeeeiiii e e a e e e e e st aaeee s 33
2.5.28 Carrying out an EEPROM FESEL...........uuiiiiiiiii et a e 34

\Y) Nanotec’

PLUG & DRIVE

2.5.29
2.5.30
2.5.31
2.5.32
2.5.33
2534
2.5.35
2.5.36
2.5.37
2.5.38
2.6
2.6.1
2.6.2
2.6.3
26.4
2.6.5
2.6.6
2.6.7
2.6.8
2.6.9
2.6.10
2.6.11
2.6.12
2.6.13
2.6.14
2.6.15
2.6.16
2.6.17
2.6.18
2.6.19
2.7
2.71
2.7.2
2.7.3
274
275
276
277
278
279
2.8

Setting automatic sending of the Status...........cooiiiiii i, 34
Starting the DOOHIOAAETeeii e 34
Setting the reVErse ClEAranCeoccuuiiiiiiie et e e e 35
7= e IR (A=Y = 10 1] o PP 35
Setting the maximum jerk for the acceleration rampcccooveeeiiiiiici e, 36
Setting the maximum jerk for the braking ramp ... 36
Setting the wait time for switching off the brake voltage...........cccoocoiiii i, 37
Setting the wait time for the motor movement ..., 38
Setting the wait time for switching off the motor current............coooi i 38
Setting baudrate of the CONroller.............oooiiiii e 39
RECOrd COMMEANGAS ...t e e e e e aneeeas 40
Starting the MOTOT......ooo et e e e e e e enees 40
1 (o] o] o)1 a o =T 4410 | (o] oSSR 40
Loading a record from the EEPROMccociiiiiiiiiiie et e 40
Reading out the CUrent reCOINdoviiiiiiiiieiiiieii e eneaannnnannnes 41
S T= NV 1 aTo = T (=Yoo] (o PRSP 41
Setting positioning mode (0ld SChEME)......c.ccoiiiii e 43
Setting the positioning mode (NEW SChEME)occuiiiiiiiiii e 45
Setting the travel diStanCe..........ooo i 46
Setting the MiNIMUM frEQUENCYoooiiiiii e 47
Setting the Maximum frEQUENCYcooiiiiiiii e 48
Setting the Maximum frEQUENCY 2uiiiiii e 48
Setting the acceleration ramPooo i e 49
Setting the Brake ramp ... s 49
Setting the qUICKSIOP FamMIPeoiiie e 50
Setting the direction of rotation ... 50
Setting the change of dIr€CHONc.uviiiiii e 51
Setting the rEPELItIONSccoieee e 51
Setting the rECOId PAUSEc..eeiii e e 52
Setting the continuation rECOrd ... 52
Mode-SPeCific COMMEANGSooiiiiiiei e e e e e e 53
Setting the dead range for the joystick Modeoooiiiiiiiii e, 53
Setting the filter for the analog and joystick modesccoociviiiiiii e, 53
Setting the minimum voltage for the analog Mode ..., 54
Setting the maximum voltage for the analog Modec.cooceiiiiiiii i, 54
Resetting switCh-0n NUMEratorooiiiiii e 54
Adjusting the time until the current reduction...............oc e 55
INCreasing the SPEEQ...........coo i 55
LYo U Ted oo I { g LY o= =T o L 55
ACIUALING the tHIGGET ... e e e e e e e e raeea s 56

Commands fOr JAVA PrOGIamuuiiiiiiiee ettt ettt e e et e e e sbee e e e e 57

\Y) Nanotec’

PLUG & DRIVE

2.8.1
2.8.2
2.8.3
284
2.8.5
2.8.6
2.8.7
29
2.91
292
293
294
295
296
297
298
299
2.9.10
2.9.11
2912
2913
2914
2.9.15
2.9.16
2917
2.9.18
2.9.19
2.9.20
2.9.21
2.9.22
2.9.23
2924
2925
2.9.26
2.9.27
2.9.28
2.9.29
2.9.30
2.9.31
2.9.32
2.9.33

Transferring a Java program o the controller.............oooiiiiiiiiii e 57
Starting a loaded Java Program...........ccueiieiiiiie e e e et a e e e e e eneeas 57
Stopping the running Java Programccciicciieiie e e e e e eaa e 57
Verifying loaded Java Programcooociiiiiiiee et ee et e e e e e e e e e e aaee s 58
Automatically starting the Java program when switching on the controller........................ 58
Reading out error of the Java program ... 58
Reading out the warning of the Java program..............ccccoiiiiiiniie e 59
CloSEd 100D SELNGS ...t e e s e e e s e e 60
Activating closSed-100P MOAEcoooiiiiiiiiii e 60
Reading out the closed 100p MOde Status...........ccueiiiiiiiiii e 61
Setting the tolerance window for the limit POSItioN...........ccooiiiiiiiiii e, 61
Setting the time for the tolerance window of the limit position.............ccccooiviiiiiiin e, 62
Setting the maximum allowed fOllOWING EITOTcooiiiiiiie e 62
Setting the time for the maximum folloWiNg €rrorcc.coiiiiiiieiiie e 63
Maximum Speed deVIAtioNcooiiiiiiiii e a e 63
Time for maximum speed deviationeeeiieiiiiiiiii e 64
Setting the MOtOr POIE PAIISeeiiiie i e e e 64
Setting the number of INCrEMENTSoiiiii e 65
Setting the number of FeVOIULIONSoiiiiii e 66
Setting the numerator of the P component of the speed controllerc.ccccooviiiieeeneennn. 67
Setting the denominator of the P component of the speed controller...................cccccccoo. 67
Setting the numerator of the | component of the speed controller..............cccccoiiiiiiin. 68
Setting the denominator of the | component of the speed controller..............cccceevvienenee 68
Setting the numerator of the D component of the speed controller.............cccceevvieeeennen. 69
Setting the denominator of the D component of the speed controllercccoccveeenneen. 69
Setting the numerator of the P component of the cascading speed controller.................... 70
Setting the denominator of the P component of the cascading speed controller 70
Setting the numerator of the | component of the cascading speed controller 71
Setting the denominator of the | component of the cascading speed controller.................. 71
Setting the numerator of the D component of the cascading speed controller.................... 72
Setting the denominator of the D component of the cascading speed controller 72
Setting the numerator of the P component of the position controller...................ccccocccee. 73
Setting the denominator of the P component of the position controller............................... 73
Setting the numerator of the | component of the position controller.................ccoooceiiee. 74
Setting the denominator of the | component of the position controllercccccccereennnee 74
Setting the numerator of the D component of the position controllerccccceeivieeennee 75
Setting the denominator of the D component of the position controller................ccccueeen..e. 75
Setting the numerator of the P component of the cascading position controller 76
Setting the denominator of the P component of the cascading position controller.............. 76
Setting the numerator of the | component of the cascading position controller................... 77

Setting the denominator of the | component of the cascading position controller 77

\Y) Nanotec’

PLUG & DRIVE

29.34 Setting the numerator of the D component of the cascading position controller 78
2.9.35 Setting the denominator of the D component of the cascading position controller 78
2.10 Motor-dependent correction values determined by test runs for the closed loop mode....... 79
2.101 Reading out the encoder/motor OffSet..........cooiiiiiiiiiii e 79
2.10.2 Reading out the load angle of the Motor............c..uviiiiii i 79
210.3 Reading out the correction values of the speed controller............cccccooiiiiiiii e, 80
2104 Reading out the correction values of the current controller............cccoooiiiiie, 80
2.10.5 Reading out the correction values of the position controller............cccoccoiiiiiiiiiiii e, 81
2.1 R TeT0] 010 o 0o o [SO 82
2111 INtEgration Of @ SCOPE.......o it 82
211.2 Setting the SAMPIE rate ..o 83
2.11.3 Reading out the setpoint position of the ramp generator............cccccveviiiie i, 84
211.4 Reading out the actual position of the encoder ..., 84
211.5 Reading out the setpoint current of the motor controller.............ccccoveiiiiiieiiie e, 85
2.11.6 Reading out the actual voltage of the controller ... 85
2117 Reading out the digital iNPULS............eumiiiiiieee e 86
2.11.8 Reading out the voltage at the analog iNPuUtccooeiiiiiiiiii e 86
211.9 Reading out the CAN BUS 108coouiiiiii e 87
2.11.10 Reading out the controller temperature ..o 87
211.11 Reading out the fOllOWING ©ITOToiiiiiiiie e e e 88
212 Configuration of the current controller of the SMCP33 and PD4-N drivers.............ccccoeeu.... 89
2121 Setting the P component of the current controller at standstillcccccooiiiiii e 89
212.2 Setting the P component of the current controller during the run............cccoccoiiiiiin e, 89
2123 Setting the scaling factor for speed-dependent adjustment of the P component of the
coNtroller dUMNG the FUN......oo et e e e e e e e e nbe e e e e e e e s nnneees 90
2.12.4 Setting the | component of the current controller at standstill................cccccoooeiiiiiiienen. 90
2125 Setting the | component of the current controller duringthe run ..o, 9
2.12.6 Setting the scaling factor for speed-dependent adjustment of the | component of the
CONLroller UFING the TUN.......oo e e e e e e e e e e e e e e s e s be e e e e e e s sannnraees M
3 Programming with Java (NaNOJEASY)......cccuuiiiiiiei et e e 92
3.1 L0 1YY TSR 92
3.2 (70T 400 aF= T o oY =T LY 1= YRR 93
3.3 INStalliNng NANOJEASY.....ccoiiiiiiiiiiiiie et 94
3.4 WOrking With NaNOJEGSYccuuiiiiiiiiiie et 95
3.41 Main Window Of NaNOJEGSYccuuiiiiiiiiiie et 95
34.2 Development process With NanOJEASYccuuuiiiiiiiiiiie e 96
3.4.3 Integrated COMMEANGSot e e e e e e e e e e e e e e aannes 97
3.5 Classes and fUNCHONSoiiiiiiii e 99
3.5.1 ECOMIM” ClASS ..ttt ettt e st et e et e ebe e e sne e e saneenane e 99
3.5.2 UMV CIASS ...ttt rn e st et 99
3.5.3 B (0 o =TT 3SR 107

\) Nanotec’

PLUG & DRIVE

3.54
3.6

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.7

3.71
3.7.2
3.7.3
3.74
3.7.5

B0 = T TSRS 108
Java programming @XamMPIEScoieii i e e 109
L= (oo | =bre=Taa] o] L=TN = Y- (PSRRI 109
DigitalEXaMIPIE.JAVA.......cc e e e e e e e e e aaaaeaaan 110
TIMErEXAMPIE.JAVAooveiiiiiiiicceeee et e e e e e e e e e e e e 110
ConfigDrivVEEXample.java..........coooiiiiiii e 111
DigitalOUIPULJAVA ... et 112
Manual translation and transfer of a program without NanoJEasy............c.cccccceeviinennnn 113
NECESSAIY TOOIS.eeieiieie et e bt e e e e e e e e 113
Translating the Programo 114
Linking and converting @ Program..........c.. e iiieee ettt 114
Transferring the program o the controller ... 115
EXecuting the Program 115
Possible Java error MESSAJES ... 117
Programming via the COM iNterfaCe.......cccuiiiiiii e e e 119
OVEBIVIBW ...ttt ettt ea e ettt e bt e et et e sae e e et e e e sab e e e nne e e nar e 119
COMMANG OVEIVIEW ...ttt ettt ettt nbe e s e e ne e nne e 120
Description of the FUNCHONS........oc.uiii e 123
GENEral TUNCHIONSeoiiiiee et et e e e e e e eneee 123
Status functions for older MOTOrS ... 125
Motor control functions for older MotOrs ..o 127
Status functions for NEWEr MOTOISeiiiiiiii e 139
Motor control functions for Newer MOLOrS..........c.eiiiiiiiiii e 141
Programming @XamIPIEScooiiiiiiiiiie e a e ee e e 161

\Y) Nanotec’

PLUG & DRIVE

1 About this manual

Target group

This technical manual is aimed at programmers who wish to program their own
controller software for communication with controllers for the following Nanotec
motors:

o SMCI12 (available from 02/10)
e SMCI33*

¢ SMCI35 (available from 12/09)
e SMCI47-S *

¢ SMCP33

e PD4-N (available from 12/09)
e PD6-N

Please note following information!

Information on SMCI33 and SMCI47-S

For drivers with firmware more recent than 30.04.2009 the update to the new firmware
that is described in this manual cannot be carried out by the customer.

Please send us these drivers, we will carry out the update for you quickly and, of
course, free of charge.
Contents of the manual

This manual contains a reference to all commands for controlling Nanotec motors
(Chapter 2). Chapter 3 describes how to program them with Java (NanoJEasy),
Chapter 4 describes how to program them via the COM interface.

Please note!

This programming manual must be read carefully before the Nanotec firmware
command references are used for creating controller programs.

In the interests of its customers and to improve the function of this product Nanotec
reserves the right to make technical alterations and further develop hardware and
software without prior notice.

This manual was created with due care. It is exclusively intended as a technical
description of the Nanotec firmware command references and the programming by
JAVA or the COM interface. The warranty is limited to the repair or replacement of
defective equipment of the Nanotec stepper motors, according to our general terms
and conditions; liability for damage or errors resulting from the incorrect use of the
command references for the programming of motor drivers is excluded.

For criticisms, proposals and suggestions for improvement, please contact the
address given in the Editorial (page 2) or send an email to: info@nanotec.com

mailto:info@nanotec.com

\Y) Nanotec’

PLUG & DRIVE

2 Command reference of the Nanotec
firmware

2.1

2.1.1

General information

Command structure

Controller command structure

A command begins with the start character '#' and ends with a carriage return \r'. All
characters in between are ASCII characters (i.e. they are not control characters).

The start character is followed by the address of the motor as an ASCII decimal
number.

This value may be from 1 to 254. If ™' is sent instead of the number, all drivers
connected to the bus are addressed.

This is followed by the actual command which generally consists of an ASCII
character and an optional ASCIl number. This number must be written in decimal
notation with a prefix of '+' or '-'.

When the user sends a setting to the firmware, a '+' sign is not mandatory for positive
numbers.

Note:
Some commands consist of multiple characters while others do not require a number
as a parameter.

Controller response

Examples

If a controller recognizes a command as relevant to it, it confirms receipt by returning
the command as an echo but without the '#' start character.

If the controller receives an unknown command, it responds by returning the
command followed by a question mark '?".

The response of the controller ends with carriage return '\r', like the command itself.
The address is returned as '001' and not as '1".

If invalid values are transmitted to the controller, these are ignored but sent back as an
echo anyway.

Example

Value transmitted to the controller: “#1G=10000000\r"

Firmware response: “001G10000000\r” (value will be
ignored)

Setting the travel distance of controller 1:"#1s1000\r" -> "001s1000\r"
Starting a record: “B1A\r -> “001A\r”

Invalid command: “#1°\r" -> “001°?2\r”

CanOpen interface specification

Information on programming with CanOpen can be found in the corresponding manual
for the interface at www.nanotec.com.

http://www.nanotec.com/

\Y) Nanotec’

PLUG & DRIVE

2.1.2 Long command format

Use

With the launch of the new firmware, commands were introduced that consist of more

than one character. These commands are used for reading and changing machine

parameters. Because these usually only have to be set during startup, the slower

transmission speed due to the length of the command has no effect on operation.
Long command structure

A long command begins with the addressing scheme already described ("#<ID>").
This is followed by a colon that marks the beginning of the long command. Next
comes the keyword and the command, followed by a carriage return character ("\r")
that indicates the end of the command.

A long command can consist of the characters "A" to "Z" or "a" to "z" and the
underscore ("_"). The syntax is case sensitive. Digits are not allowed.

Keywords
The following keywords are defined for long commands:
:.CL For the controller settings and the motor settings (closed loop)
:brake For the motor controller

:Capt For the scope mode

Controller response
The firmware response does not begin with a "#" like the user request.

If the values are positive, the keyword is followed by a "+" sign. For negative values, a
"-" sign is used.

Both signs ("+" and "-") can be used as separators.

If an unknown keyword is sent (unknown command), the firmware responds with a
question mark after the colon.

Example
Unknown command: “#ID:CL_does_not_exist\r’

Firmware response: “ID:\r"

Command for reading a parameter
Read command

To read a parameter, the end of the command name is terminated with a carriage
return character.

Read command: "#ID:keyword_command_abc\r"
Firmware response
The firmware responds with an echo of the command and its value.

Response: "ID:keyword_command_abc+value\r"

\) Nanotec’

PLUG & DRIVE

Command for changing a parameter

Example

Change command

To change a parameter, the command name is followed by a "=" character, followed
by the value to be set. For positive values, a "+" sign is not mandatory but is also not
disallowed. The command is terminated with a carriage return character.

Change command: "#1D:keyword_command_abc=value\r"
Firmware response

The firmware responds with an echo of the command as confirmation.
Response: "ID:keyword_command_abc+value\r"

See also the following example.

The structure of the long command is shown in the following example:
"Read out the motor pole pairs"

Read parameter "#1:CL_motor_pp\r"

Firmware response "1:CL_motor_pp+50\r"

Change parameter "#1:CL_motor_pp=100\r"

Firmware response "1:CL_motor_pp100\r"

\Y) Nanotec’

PLUG & DRIVE

2.2 Command overview

Below you will find an overview of the serial commands of the Nanotec firmware

(characters and parameters):

- ...-...reduces the speed...........ccccevvrrrrenne. 55
I'... Setting the motor mode.cccuuuee 20
$... Reading out the status............cc..cccuee..... 29

% ... % ... resets the switch-on numerator.....54

(J ... Transferring a Java program to the

CONMIOIIEr ... 57
(JA ... Starting a loaded Java program.......... 57
(JB ... Automatically starting the Java program
when switching on the controller 58
(JE ... Reading out error of the Java program
... 58
(JI ... Verifying loaded Java program............. 58

(JS ... Stopping the running Java program....57
(JW ... Reading out the warning of the Java

o]0 Te] =y o IO PRURR 59
-(Space) ... Reading out the firmware version
(O1d) e 30
:b ... Setting the maximum jerk for the
acceleration ... 36
:B ... Setting the maximum jerk for the braking
(=] 0] o 36
@S ... Starting the bootloader 34
~...EEPROM Reset.......cccovviiiiieeeiee e, 34
+ ...+ ..increases the speed....................... 55
= ... = ... sets the dead range for the joystick
370 o = RSP 53
>...>..8aves arecord........cccccceiiiieeeeniinnnns 41
a ... Setting the step angle..........ccccoieee 22
A ... Starting the motor..........ccccoviiiiiienne 40
b ... Setting the acceleration ramp................. 49
B ... Setting the brake ramp..........cccccceeiineeee. 49
baud ... Setting the baudrate of the controller
... 39
brake_ta ... Setting the wait time for switching
off the brake voltagecccccevivieeiiienenns 37
brake_tb ... Setting the wait time for the motor
MOVEMENE ..ottt 38
brake_tc ... Setting the wait time for switching
off the motor current..........ccccoooviiienn 38
C ... Reading out the position 27

C ... Resetting the positioncccoeceeenen 28

Capt_iAnalog ... Reading out the voltage at the
analog iNPULecvvee e 86

Capt_iBus ... Reading out the CAN bus load 87

Capt_IFollow ... Reading out the following error

Capt_iln ... Reading out the digital inputs..... 86

Capt_iPos ... Reading out the actual position of

the encoder........ooovvviiiiiiiiiiiiiiieeeeeeeeeeeeereeeeees 84
Capt_ITemp ... Reading out the temperature of
the controller ..., 87
Capt_iVolt ... Reading out the actual voltage of
the controllerooovvvevieiiiiiiiiiieeeeeeeeeeeeees 85
Capt_sCurr ... Reading out the setpoint current
of the motor controller.............ccccceeeviiienenne 85
Capt_sPos ... Reading out the setpoint position
of the ramp generatorccccccvvveeeeeeennn. 84
Capt_Time ... Setting the sample rate 83

CL_enable ... Activating the closed loop....... 60

CL_following_error_timeout ... Setting the time
for the maximum following error 63

CL_following_error_window ... Setting the
maximum allowed following error 62

CL_is_enabled ... Closed loop mode status. 61

CL_KD_css N ... Setting the denominator of
the D component of the cascading position
CONMIOIIET ... 78

CL_KD_css_Z ... Setting the numerator of the
D component of the cascading position
LoTo] 11]| 1= R 78

CL_KD_csv_N ... Setting the denominator of
the D component of the cascading speed
CoNtroller ... 72

CL_KD_csv_Z ... Setting the numerator of the
D component of the cascading speed

controller ... 72
CL_KD_s_ N ... Setting the denominator of the
D component of the position controller 75
CL_KD_s_Z ... Setting the numerator of the D
component of the position controller............. 75
CL_KD_v_N ... Setting the denominator of the
D component of the speed controller............ 69
CL_KD_v_Z ... Setting the numerator of the D
component of the speed controller 69

\Y) Nanotec’

PLUG & DRIVE

CL_KI_css_N ... Setting the denominator of
the | component of the cascading position
CONtroller.........ueeeeie e 77

CL_KI_css_Z ... Setting the numerator of the |
component of the cascading position controller

... 77
CL_KI_csv_N ... Setting the denominator of
the | component of the cascading speed
CONLrOllEr ... 71

CL_KI_csv_Z ... Setting the numerator of the |
component of the cascading speed controller

CL_KI_s_N ... Setting the denominator of the |
component of the position controller 74

CL_KI_s_Z ... Setting the numerator of the |
component of the position controller 74

CL_KI_v_N ... Setting the denominator of the |
component of the speed controller................ 68

CL_KI_v_Z ... Setting the numerator of the |
component of the speed controller................ 68

CL_KP_css_N ... Setting the denominator of
the P component of the cascading position
controller..........e e 76

CL_KP_css_Z ... Setting the numerator of the
P component of the cascading position
CONtroller ... 76

CL_KP_csv_N ... Setting the denominator of
the P component of the cascading speed
CONMIOIIET ... 70

CL_KP_csv_Z ... Setting the numerator of the
P component of the cascading speed controller

... 70
CL_KP_s_N ... Setting the denominator of the
P component of the position controller.......... 73
CL_KP_s_Z ... Setting the numerator of the P
component of the position controller 73
CL_KP_v_N ... Setting the denominator of the
P component of the speed controller............. 67
CL_KP_v_Z ... Setting the numerator of the P
component of the speed controller................ 67

CL_la_abis CL_la_j ... Reading out the load
angle of the motor.........cccocociiiiiiiie 79

CL_motor_pp ... Setting the motor pole pairs64

CL_ola_i_ atoCL ola_i_g... Reading out the
correction values of the current controller.....80

CL_ola_|_ato CL_ola_I_g ... Reading out the
correction values of the position controller....81

CL _ola_v_ato CL_ola_v_g ... Reading out the
correction values of the speed controller....... 80

CL_poscnt_offset ... Reading out the
encoder/motor offset.......cccccceeeviiiiiiiienneen. 79

CL_position window ... Setting the tolerance
window for the limit position.......................... 61

CL_position window_time ... Setting the time
for the tolerance window of the limit position 62

CL_rotenc_inc ... Setting the number of

INCrEMENTS .. 65
CL_rotenc_rev ... Setting the number of
FEVOIULIONS...ceiiiiee i 66
CL_speed_error_timeout ... Time for maximum
speed deviation............ccoooiiiiiniiii 64
CL_speed_error_window ... Maximum speed
deviation..........cccoii i 63
D ... Resetting the position error................... 25
d ... Setting the direction of rotation............... 50

dspdrive_KI_hig ... Setting the | component of
the current controller during the run.............. 91

dspdrive_KI_low ... Setting the | component of
the current controller at standstill.................. 90

dspdrive_KI_scale ... Setting the scaling factor
for speed-dependent adjustment of the |
component of the controller during the run... 91

dspdrive_KP_hig ... Setting the P component
of the current controller during the run.......... 89

dspdrive_KP_low ... Setting the P component
of the current controller at standstill.............. 89

dspdrive_KP_scale ... Setting the scaling
factor for speed-dependent adjustment of the
P component of the controller during the run 90

E ... Reading out the error memory 26
e ... Setting the limit switch type 22

f ... Setting the filter for the analog and joystick
MOAES ..o 53

F ... Setting the record for auto correction 23

g ... Setting the step mode...........cccevieeeens 19
G ... time until the current reduction.............. 55
h ... Reversing the polarity of the inputs and

OULPULS ..o 32
H ... Setting the quickstop ramp.................... 50
| ... Reading out the error memory................ 27
i ... Setting the phase current........................ 18
is_referenced ... Motor is referenced............. 28

J ... Setting automatic sending of the status. 34
K ... Setting the debounce time for the inputs32
| (Pipe) ... Reading out the current record 41
L ... Masking and demasking inputs 31

| ... Setting the motor mode...........cccuvereeneee. 21

\Y) Nanotec’

PLUG & DRIVE

M ... Reading out the motor address............. 28
m ... Setting the motor address 19
N ... Setting the continuation record 52
n ... Setting the maximum frequency 2.......... 48
0 ... Setting the maximum frequency............. 48
O ... Setting the swing out time 24
p ... Setting the positioning mode............. 43, 45
P ... Setting the record pause............ccco.eee.. 52
g ... Setting the encoder direction.................. 24
Q ... Setting the minimum voltage for the

analog Mode.........ccooiveeiiiiiiieiiiiieee e 54
R ... Setting the maximum voltage for the

analog MOode.......ccooeviiiiiiiiiiiee e 54

r ... Setting the phase current at standstill.....18

ramp_mode ... Setting the ramp 35
s ... Setting the travel distance...................... 47
S ... Stopping @a MOtor.......cccevvevciiiiieeieeenn. 40
T ... Actuating the triggercccoeevnnnnee.n. 56
t ... Setting the change of direction................ 51
U ... Setting the error correction mode.......... 23
u ... Setting the minimum frequency 47
v ... Reading out the firmware version........... 30
W ... Setting the repetitions..............cccceeee 51
X ... Setting the maximum encoder deviation25
y ... Loading a record from the EEPROM 40
Y ... Setting the outputsccevviieiiinnnnn. 33
z ... Setting the reverse clearance 35
Z + parameter ... Read command................. 16

\Y) Nanotec’

PLUG & DRIVE

2.3

Function

Command

Example

Read command

A series of settings that can be set with a specific command can be read out with a
corresponding read command.

Character Parameter

'Z' + parameter ' The read command is composed of the 'Z' character
and the command for the corresponding parameter.

Read out the travel distance: "#1Zs\r" -> "001Zs1000\r"

Firmware response

Description

Returns the required parameter.

This is used to read out the current settings of the values of certain commands. For
example, the travel distance is read out with 'Zs' to which the firmware responds with
'Zs1000'".

If the parameter of a specific record is to be read out, the number of the record must
be placed in front of the respective command.

Example: 'Z5s' -> 'Z5s2000'

A list of record commands can be found under "2.4 Records"

\Y) Nanotec’

PLUG & DRIVE

2.4 Records

Saving travel distances

The firmware supports the saving of travel distances in records. These data are saved
in an EEPROM and, consequently, are retained even if the device is switched off.

The EEPROM can accommodate 32 records with record numbers 1 to 32.

Saved settings per record

The following settings are saved in every record:

continuation record

Setting Para- | See section Page
meter

Position mode P’ 2.6.6 Setting positioning mode 43

Travel distance 's' 2.6.8 Setting the travel distance 46

Initial step frequency u' 2.6.9 Setting the minimum frequency 47

Maximum step '0' 2.6.10 Setting the maximum frequency 48

frequency

Second maximum step n' 2.6.11 Setting the maximum frequency 48

frequency 2

Acceleration and b’ 2.6.12 Setting the acceleration ramp 49

braking ramp

Direction of rotation 'd' 2.6.15 Setting the direction of rotation 50

Reversal of direction of 't 2.6.16 Setting the change of direction 51

rotation for repeat

records

Repetitions 'W' | 2.6.17 Setting the repetitions 51

Pause between 'P' 2.6.18 Setting the record pause 52

repetitions and

continuation records

Record number of 'N' 2.6.19 Setting the continuation record 52

\) Nanotec’

PLUG & DRIVE

2.5 General commands
25.1 Setting the phase current
Parameter
Character | Permissible Writable Data type Default value
values
i 0to 150 Yes u8 (integer) | depending on
controller

Firmware response

Confirms the command through an echo.

Description
Sets the phase current in percent. Values above 100 should be avoided.
Reading out
Command 'Zi' is used to read out the current valid value.
2.5.2 Setting the phase current at a standstill
Parameter
Character | Permissible Writable Data type Default value
values
r 0to 150 Yes u8 (integer) | depending on
controller

Firmware response

Confirms the command through an echo.

Description
Sets the current of the current reduction in percent. Like the phase current, this current
is relative to the end value and not relative to the phase current. Values above 100
should be avoided.

Reading out

Command 'Zr' is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

2.5.3 Setting the step mode
Parameter
Character | Permissible Writable Data type Default value
values
g’ 0 to 255 Yes u8 (integer) | 2 = half step

Firmware response

Confirms the command through an echo.

Description

Sets the step mode. The number handed over equals the number of microsteps per

full step, with the exception of the value 255 which selects the adaptive step mode.
Reading out

Command 'Zg' is used to read out the current valid value.
25.4 Setting the motor address
Parameter

Character | Permissible Writable Data type Default value
values
'm' 1to 254 Yes u8 (integer) | 1

Firmware response

Confirms the command through an echo.

Description
Sets the motor address. Ensure that the newly set address is not already occupied by
another motor as this would make communication impossible.
Addresses 0 and 255 are reserved for faults of the EEPROM.

Reading out

Command 'Zm' is used to read out the current address. See also command 2.5.20
Reading out the motor address 'M'.

\Y) Nanotec’

PLUG & DRIVE
2.5.5 Setting the motor mode
Parameter
Character | Permissible Writable Data type Default value
values
" 1to 101 Yes u8 (integer) | 1

Firmware response
Confirms the command through an echo.
If invalid values are set for motor mode '!" and positioning mode 'p', the motor mode "'
retains its value and the positioning mode 'p' is set to 1.
Description
Sets the motor mode. The following modes are available:
For old scheme:
: Positioning mode
: Speed mode
: Flag positioning mode
: Clock direction mode
: Analog mode
: Joystick mode

: Analog positioning mode

0 N o g b~ W N -

: HW reference mode

9: Torque mode

101: CL quick test mode

101: CL test mode

For more information, see command 2.6.6 Setting positioning mode (old scheme) 'p'.
For new scheme:

10: Motor mode

For more information, see command 2.6.7 Setting the positioning mode (new scheme)

p.

Reading out

Command 'Z!" is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

2.5.6 Setting the limit switch behavior
Parameter
Character | Permissible Writable Data type Default value
values
I 0 to 4294967295 Yes u32 (integer) | 17442

Firmware response

Confirms the command through an echo.

Description
Sets the limit switch behavior. The integer parameter is interpreted as a bit mask. The
bit mask has 16 bits.
"Free travel" means that, when the switch is reached, the controller travels away from
the switch at the set lower speed.
"Stop" means that, when the switch is reached, the controller stops immediately. The
switch remains pressed.
Behavior of the internal limit switch during a reference run:
BitO: Free travel forwards
Bit1: Free travel backwards (default value)
Exactly one of the two bits must be set.
Behavior of the internal limit switch during a normal run:
Bit2: Free travel forwards
Bit3: Free travel backwards
Bit4: Stop
Bit5: Ignore (default value)
Exactly one of the four bits must be set.
This setting is useful when the motor is not allowed to turn more than one rotation.
Behavior of the external limit switch during a reference run:
Bit9: Free travel forwards
Bit10: Free travel backwards (default value)
Exactly one of the two bits must be set.
Behavior of the external limit switch during a normal run:
Bit11: Free travel forwards
Bit12: Free travel backwards
Bit13: Stop
Bit14: Ignore (default value)
Exactly one of the four bits must be set.
With this setting, the travel distance of the motor can be precisely limited by a limit
switch.
Reading out

Command 'ZI' is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

2.5.7 Setting the limit switch type
Parameter
Character | Permissible Writable Data type Default value
values
‘e’ Oand 1 Yes u8 (integer) | O

Firmware response

Confirms the command through an echo.

Description
Specifies the type of limit switch:
e Value 0: Opener
¢ Value 1: Closer
This parameter is used to indicate to the firmware the state in which it sees the
external limit switch as activated. The limit switch is connected between the supply
voltage (to +5V in SMCIxx) and input 6.
Therefore, 'opener' means that, under normal conditions, a high level is applied at the
input since the switch is normally closed. When the switch is activated, it opens this
contact ("opener") and there is no voltage at the input.
Reading out
Command 'Ze' is used to read out the current valid value.
2.5.8 Setting the step angle
Parameter
Character | Permissible Writable Data type Default value
values
'a’ 0 to 255 Yes u8 (integer) | 18

Firmware response

Confirms the command through an echo.

Description
To convert the encoder position to the rotor position, the firmware requires information
about the step angle of the motor. A value of 9 must be set for 0.9° motors, and 18
must be set for 1.8° motors. Other values are not supported.

Reading out

Command 'Za' is used to read out the current setting of the value.

\Y) Nanotec’

PLUG & DRIVE

2.5.9

Parameter

Setting the error correction mode

Character | Permissible Writable Data type Default value
values
‘U 0and 1 Yes u8 (integer) | 0

Firmware response

Description

Reading out

2.5.10

Parameter

Confirms the command through an echo.

Sets the error correction mode:

e Value 0: Off
e Value 1: Correction after travel

In a motor without an encoder, this value must be explicitly set to 0; otherwise, it will
continuously attempt to make a correction because it assumes that there are step

losses.

Command 'ZU' is used to read out the current setting of the value.

Setting the record for auto correction

Character | Permissible Writable Data type Default value
values
'F 0to 32 Yes u8 (integer) | O

Firmware response

Description

Reading out

Confirms the command through an echo.

The ramp and the speed in the selected record (integer) are used for the correction

run.

See command 2.5.9 Setting the error correction mode 'U'.

Command 'ZF' is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

2.5.11 Setting the encoder direction
Parameter
Character | Permissible Writable Data type Default value
values
q' Oand 1 Yes u8 (integer) | O

Firmware response

Confirms the command through an echo.

Description

If the parameter is set to '1', the direction of the rotary encoder is reversed.
Reading out

Command 'Zq' is used to read out the current valid value.
2.5.12 Setting the settling time
Parameter

Character | Permissible Writable Data type Default value
values
'O 0 to 250 Yes u8 (integer) | 8

Firmware response

Confirms the command through an echo.

Description
Defines the settling time in 10ms steps between the end of the run and when the
position is checked by the encoder.
This parameter is only valid for the positional check after a run.
See command 2.5.9 Setting the error correction mode 'U'.
Between repetitions or continuation records, this position is only checked if the pause
time (see command 2.6.18 Setting the record pause 'P') is longer than the swing out
time.
After a record, the settling time is awaited before the motor indicates that it is ready
again.

Reading out

Command 'ZO' is used to read out the current valid value.

\Y) Nanotec’

PLUG & DRIVE

2.5.13

Parameter

Setting the maximum encoder deviation

Character | Permissible Writable Data type Default value
values
X' 0 to 250 Yes u8 (integer) | 2

Firmware response

Description

Reading out

2.5.14

Parameter

Confirms the command through an echo.

Specifies the maximum deviation in steps between the setpoint position and the
encoder position.

In step modes greater than 1/1 step in 10° and 1/1 step in 5° motors, this value must
be greater than 0 since, even then, the encoder has a lower resolution than the
microsteps of the motor.

Command 'ZX" is used to read out the current valid value.

Resetting the position error

Character | Permissible Writable Data type Default value
values
D' -2147483648 to Yes s32 (integer) | O
+2147483647

Firmware response

Description

Confirms the command through an echo.

Resets an error in the speed monitoring and sets the current position to the position
indicated by the encoder (for input without parameters, C is set to |, see section 2.5.15
and 2.5.16).

For input with parameters, C and | are set to the parameter value.
Example: 'D100' -> C=100; 1=100

\) Nanotec’

PLUG & DRIVE

2.5.15 Reading out the error memory
Parameter
Character | Permissible Writable Data type Default value
values
'E' - No - -

Firmware response

Returns the index of the error memory with the last error that occurred.

The last 32 errors are stored. When memory location 32 is reached, the next error is
again stored at memory position 1. In this case, memory position 2 contains the

This command is used to read out the index of the memory space with the last error

Description
The firmware contains 32 error memory locations.
oldest error code that can be read out.
that occurred and the corresponding error code.
Reading out

Command 'Z’ + Index number + 'E’ is used to read out the error number of the

respective error memory.

Example: 'Z32E’ returns the error number of index 32.

Error codes

/' Error codes for error byte in EEPROM

#define ERROR_LOWVOLTAGE 0x01
#define ERROR_TEMP 0x02
#define ERROR_TMC 0x04
#define ERROR_EE 0x08
#define ERROR_QEI 0x10
#define ERROR_INTERNAL 0x20
Meaning
Error Meaning
LOWVOLTAGE Undervoltage
TMC Controller module returned one error.
EE Incorrect data in EPROM, e.g. step resolution is
25th of one step.
QEl Position error
INTERNAL Internal error (equivalent to the Windows blue screen).

Controller status

The status of the controller can be read out with the 2.5.21 Reading out the status '$'

command.

\Y) Nanotec’

PLUG & DRIVE

2.5.16 Reading out the encoder position
Parameter
Character | Permissible Writable Data type Default value
values
||| _ NO — —

Firmware response

Returns the current position of the motor according to the encoder.

Description

In motors with an encoder, this command returns the current position of the motor in
motor steps as indicated by the encoder. Provided that the motor has not lost any
steps, the values of the 2.5.17 Reading out the position 'C' command and the 2.6.4
Reading out the current record ' |' (pipe) command are the same.

However, it should be noted that the encoder has a resolution that is too low for step
modes greater than 1/1 in 10° motors and 1/1 in 5° motors, and differences will
therefore still arise between the two values specified above.

2.5.17 Reading out the position

Parameter

Character | Permissible Writable Data type Default value
values

|C| _ NO — —

Firmware response

Returns the current position.

Description

Returns the current position of the motor in steps of the set step mode. This position is
relative to the position of the last reference run.

If the motor is equipped with an angle transmitter, this value should be very close to
the value of command "I" with a very low tolerance.

The tolerance depends on the step mode and the motor type (0.9° or 1.8°) since the
angle transmitter has a lower resolution than the motor in the microstep mode.

The value range is that of a 32-bit signed integer (range of values % 231).

\Y) Nanotec’

PLUG & DRIVE
2.5.18 Resetting the position
Parameter
Character | Permissible Writable Data type Default value
values
'c' - No - -
Firmware response
Confirms the command through an echo.
Description
Resets the position of the motor to 0.
The current position of the motor is then used as the reference position.
2.5.19 Request “Motor is referenced”
Parameters
Character Permissible Writable Data type Default value
values
"is_referenced' | 0 and 1 No u8 (integer) | O

Firmware response

If the motor has already been referenced, “1” is returned, otherwise “0”.

Description

Parameter is '1' after the reference run.

See also 2.5.14 Resetting the position error and 2.5.18 Resetting the position.
2.5.20 Reading out the motor address
Parameter

Character | Permissible Writable Data type Default value
values
‘Ml _ No — —

Firmware response

Returns the motor address.

Description

%

Returns the serial address. In particular, this is useful in connection with the
addressing type if the motor address is not known.

\Y) Nanotec’

PLUG & DRIVE
2.5.21 Reading out the status
Parameter
Character | Permissible Writable Data type Default value
values
|$| _ No — —

Firmware response

Returns the status of the firmware as a bit mask.

Description

The bit mask has 8 bits.
Bit 0: 1: Controller ready

Bit 1: 1: Zero position reached

Bit 2: 1: Position error

Bit 3: 1: Input 1 is set while the controller is ready again. This occurs when the
controller is started via input 1 and the controller is ready before the input has been

reset.

Bits 4 through 6 specify the current mode as an integer:

: Unused

N OO b W N =~ O

: Unused

: Controller in positioning mode

: Controller in speed mode

: Analogue mode

: Joystick mode

Bit 7 is unassigned

: Controller in flag positioning mode

: Controller in clock direction mode

\Y) Nanotec’

PLUG & DRIVE
2.5.22 Reading out the firmware version
Parameter
Character | Permissible Writable Data type Default value
values
|V| _ NO _ _

Firmware response

Returns the version string of the firmware.

Description
The return sting consists of several blocks:
'v' echo of the command
"' separator (space)
Hardware: 'PD4','PD4Ic','PD2Ic','SMCI32','SMCI47' are possible versions
' ' separator
Communication: 'USB' or 'RS485'

separator

Release date: dd-mm-yyyy, e.g. 26-09-2007

Example of a complete response
"001v PD4_RS485 26-09-2007\r"

2.5.23 Reading out the firmware version (old)
Parameter
Character | Permissible Writable Data type Default value
values
"' (space) | — No - -

Firmware response
String containing firmware version (const, since new command 'v' has assumed this
function).

Description

Required for bootloader; otherwise, this command serves no purpose.

\) Nanotec’

PLUG & DRIVE

2.5.24 Masking and demasking the inputs
Parameters
Character | Permissible Writable Data type Default value
values
'L 0 to 4294967295 Yes u32 (integer) | 0x0003003f

Firmware response
Confirms the command through an echo.

Invalid values are ignored, i.e. the entire mask is discarded.

Description
This bit mask has 32 bits.
Sets a bit mask that permits the user to use the inputs and outputs. If the bit of the
corresponding I/Os is set to '1', the firmware uses these I/Os. If it is set to '0', the 1/0Os
are available to the user. See also command 2.5.27 Setting the outputs 'Y".
The bit assignment is shown below: Biton 1:
Bit0: Input 1 1
Bit1: Input 2 2
Bit2: Input 3 4
Bit3: Input 4 8
Bit4: Input 5 16
Bit5: Input 6 32
Bit16: Output 1 65536
Bit17: Output 2 131072
All other bits are '0’ All on 1: 196671
Attention:
If a bit is not addressed when the mask is set, it is automatically set to '0', regardless
of the state. All bits must be set at once.
If invalid bit masks are used, these are discarded, even if the firmware confirms them
correctly.
Reading out
Command 'ZL' is used to read out the current setting of the mask.
Examples

All bits should be set to '0'".
Send: #1LO\r

Read: 1LO\r

Bit3 and Bit5 should be set to '1":
Send: #1L20\r

Read: 1L20\r

'20' because Bit3 is addressed with the value of 4 and Bit5 with the value of 16, i.e. 4
+ 16 = 20.

\) Nanotec’

PLUG & DRIVE

2.5.25 Reversing the polarity of the inputs and outputs
Parameters
Character | Permissible Writable Data type Default value
values
'h' 0 to 4294967295 Yes u32 (integer) | 0x0003003f

Firmware response
Confirms the command through an echo.

Invalid values are ignored, i.e. the entire mask is discarded.

Description

Sets a bit mask with which the user can reverse the polarity of the inputs and outputs.
If the bit of the corresponding I/O is set to '1', there is no polarity reversal. If it is set to
'0", the polarity of the I/O is inverted.

The bit assignment is shown below:
BitO: Input 1
Bit1: Input 2
Bit2: Input 3
Bit3: Input 4
Bit4: Input 5
Bit5: Input 6
Bit16: Output 1
Bit17: Output 2
All other bits are '0'.
If invalid bit masks are used, these are discarded, even if the firmware confirms them
correctly.
Reading out

Command 'Zh' is used to read out the current setting of the mask.

2.5.26 Setting the debounce time for the inputs

Parameters

Character | Permissible Writable Data type Default value
values

'K’ 0to 20 Yes u8 (integer) | 20

Firmware response

Confirms the command through an echo.

Description

Sets the time in ms that needs to elapse after a signal change at an input until the
signal has stabilized (so-called "debouncing").

Reading out

Command 'ZK' is used to read out the current setting of the value.

\Y) Nanotec’

PLUG & DRIVE
2.5.27 Setting the outputs
Parameters
Character | Permissible Writable Data type Default value
values
Y 0 to 4294967295 Yes u32 (integer) | 0

Firmware response

Confirms the command through an echo.

Description
This bit mask has 32 bits.
Sets the outputs of the firmware, provided that these have been masked for free use
using the 2.5.24 Masking and demasking the inputs 'L' command.
Output 1 corresponds to bit 16 and output 2 to bit 17.
Reading out

Command 'ZY" is used to read out the current setting of the value.

The status of the inputs is displayed as well.

BitO: Input 1

Bit1: Input 2

Bit2: Input 3

Bit3: Input 4

Bit4: Input 5

Bit5: Input 6

Bit6: '0' when the encoder is at the index line, otherwise '1'

Bit 16: Output 1 (as set by the user, even if the firmware is currently using it)
Bit 17: Output 2 (as set by the user, even if the firmware is currently using it)
All other bits are '0'.

\) Nanotec’

PLUG & DRIVE

2.5.28

Parameters

Carrying out an EEPROM reset

Character

Permissible
values

Writable

Data type

Default value

Yes

Firmware response

Description

2.5.29

Parameter

Confirms the command through an echo.

Restores the the factory defaults again. The controller requires a second until new
commands are accepted.

Setting automatic sending of the status

Character | Permissible Writable Data type Default value
values
J' 0and 1 Yes u8 (integer) |0

Firmware response

Description

Reading out

2.5.30

Parameter

Confirms the command through an echo.

If this parameter is set to '1', the firmware independently sends the status after the end
of a run. See command 2.5.21 Reading out the status '$', with the difference that a
lower case 'j' is sent instead of the '$'".

Command 'ZJ' is used to read out the current valid value.

Starting the bootloader

Character

Permissible
values

Writable

Data type

Default value

I@SI

Yes

Firmware response

Description

No response, bootloader responds with '@OK'

The command instructs the firmware to launch the bootloader. The firmware itself
does not respond to the command. The bootloader responds with '@OK'.

The bootloader itself also requires this command to prevent it from automatically
terminating itself after one half second. Therefore, this command needs to be sent
repeatedly until the bootloader responds with '@OK'. The bootloader uses the same
addressing scheme as the firmware itself.

\) Nanotec’

PLUG & DRIVE

2531 Setting the reverse clearance
Parameter
Character | Permissible Writable Data type Default value
values
'z' 0 to 9999 Yes u16 (integer) | O

Firmware response

Confirms the command through an echo.

Description
Specifies the reverse clearance in steps.
This setting is used to compensate for the clearance of downstream gears when there
is a change in direction.
When there is a change in direction, the motor takes the number of steps set in the
parameter before it begins incrementing the position.
Reading out
Command 'ZZ' is used to read out the current valid value.
2.5.32 Setting the ramp
Parameters
Character Permissible Writable Data type Default value
values
ramp_mode' | 0, 1and 2 Yes ul16 0
(integer)

Firmware response

Confirms the command through an echo.

Description
Sets the ramp in all modes:
e "0" = The trapezoid ramp is selected
e "1" =The sinusoidal ramp is selected
e "2"=The jerkfree ramp is selected

This parameter applies for all modes except clock direction and current mode (as

these modes do not generally use a ramp).

Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be

read out.

\Y) Nanotec’

PLUG & DRIVE

2.5.33

Parameters

Setting the maximum jerk for the acceleration ramp

Character | Permissible Writable Data type Default value
values
"b' 1-100000000 Yes u32 (integer) | 1

Firmware response

Description

Reading out

Note

2.5.34

Parameter

Confirms the command through an echo.

Sets the maximum jerk for the acceleration.

If the keyword is sent without a "= + value”, the current setting of the value can be
read out.

The actual ramp results from the values for "b" and ":b".
e "b" = maximum acceleration
e ":b" = maximum change of the acceleration (max. jerk)

Setting the maximum jerk for the braking ramp

Character | Permissible Writable Data type Default value
values
"B’ 1- 100000000 Yes u32 (integer) | 0

Firmware response

Description

Reading out

Note

Confirms the command through an echo.

Sets the maximum jerk for the braking ramp.

If the value is set to "0", the same value is used for braking as for accelerating (":b").

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

The actual ramp results from the values for "B" and ":B".
e "B" = maximum acceleration
e ":B" = maximum change of the acceleration (max. jerk)

\Y) Nanotec’

PLUG & DRIVE
2.5.35 Setting the wait time for switching off the brake voltage
Parameters
Character | Permissible Writable Data type Default value
values
"brake_ta' | 0to 65535 Yes u16 (integer) | O
Unit
ms

Firmware response

Confirms the command through an echo.

Description
The external brake can be set via the following parameters:
o Time ta:
Waiting time between switching on the motor current and switching off (triggering)
the brake in milliseconds.
o Time tb:
Waiting time between switching off (triggering) the brake and activation of
readiness in milliseconds. Travel commands will only be executed after this waiting
time.
e Time tc:
Waiting time between switching on the brake and switching off the motor current in
milliseconds.
The parameters indicate times between 0 and 65,536 milliseconds.
Default values of the controller after a reset: 0 ms.
A
| | |
Start | | | | |
| | | | |
| | |
Motor I [—
| | | | |
Bremse —:i : ll:— geschlossen
' 7. deceiaens gesfinet
Il Il 1 Il 1 :_ Ze|t
| | | | I
| ta | tb | | tc I
When switching on the controller, the brake becomes active first and the motor is not
provided with power. First the motor current is switched on and a period of ta ms
waited. Then the brake is disengaged and a period of tb ms waited. Travel commands
will only be executed after expiry of ta and tb.
Note:
During current reduction, the brake is not actively connected.
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

2.5.36

Parameters

Setting the wait time for the motor movement

Character | Permissible Writable Data type Default value
values
"brake_tb' | 0to 65535 Yes u16 0
(integer)
Unit
ms

Firmware response

Description

Reading out

2.5.37

Parameters

Confirms the command through an echo.

Sets the wait time in milliseconds between switching off of the brake voltage and
enabling of a motor movement.

For more information, see command 2.5.35 Setting the wait time for switching off the
brake voltage'ta'.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

Setting the wait time for switching off the motor current

Character | Permissible Writable Data type Default value
values

"brake_tc' | 0 to 65535 Yes u16 (integer) | O

Unit

ms

Firmware response

Description

Reading out

Confirms the command through an echo.

Sets the wait time in milliseconds between switching on of the brake voltage and
switching off of the motor current.

For more information, see command 2.5.35 Setting the wait time for switching off the
brake voltage'ta'.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

2.5.38 Setting baudrate of the controller
Parameters
Character | Permissible Writable Data type Default value
values
"baud' 0 to 255 Yes u8 (integer) | 12

Firmware response

Confirms the command through an echo.

Description

Sets the baudrate of the controller:

1 110

2 300

3 600

4 1200

5 2400

6 4800

7 9600

8 14400

9 19200

10 38400

11 57600

12 115200 (default value)

Note:

The new value is only activated (current off/on) after the controller is restarted.
Example

Command '#1:baud=8' is used to set the baudrate of the 1st. controller to 14400 baud.
Reading out

Command 'Z:baud' is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

2.6 Record commands
2.6.1 Starting the motor
Parameters
Character | Permissible Writable Data type Default value
values
|A| _ NO — —

Firmware response

Confirms the command through an echo.

Description
Starts the run with the current parameter settings.
2.6.2 Stopping a motor
Parameters
Character | Permissible Writable Data type Default value
values
'S 0 and 1 Yes u8 (integer) | O

Firmware response

Confirms the command through an echo.

Description

Cancels the current travel. The following ramps are used:

¢ Quickstop (H) if there is no argument or the argument is "0"

e Brake ramp (B) if the argument is "1"
2.6.3 Loading a record from the EEPROM
Parameter

Character | Permissible Writable Data type Default value
values
'y 1t0 32 Yes u8 (integer) | 1

Firmware response

Confirms the command through an echo.

Description
Loads the record data of the record passed in the parameter from the EEPROM.

See also command 2.6.5 Saving a record ">".

\) Nanotec’

PLUG & DRIVE

2.6.4 Reading out the current record
Parameters
Character | Permissible Writable Data type Default value
values
' (pipe) | Oand 1 Yes u8 (integer) | 1

Firmware response
Confirms the command through an echo when the parameter is set to '1'. This is the
only response.

Description
If the parameter is set to '0', the firmware does not respond at all to commands,
although it continues to execute them as before. This can be used to quickly send
settings to the firmware without awaiting a response.

Reading out
With command 'Z|', the firmware sends all settings of the loaded record together.
With 'Z5]|', the data of set 5 in the EEPROM are sent.
The format corresponds to that of the respective commands.
It should be noted that the '|' character is not sent with the response. See the following
examples.

Examples
"H1Z|\r'
-> 'Zp+1s+1u+4000+860n+1000b+55800d+1t+0W+1P+0N+0\r'
"H1Z5)\r'
->'Z5p+1s+400u+4000+1000n+1000b+2364d+0t+0W+1P+0N+0\r'

2.6.5 Saving arecord

Parameter

Character | Permissible Writable Data type Default value
values

> 1to 32 Yes u8 (integer) | 1

Firmware response

Confirms the command through an echo.

Description

This command is used to save the currently set commands (in RAM) in a record in the
EEPROM. The parameter is the record number in which the data are saved.

This command should not be called up during a run because the current values
change during subsequent runs.

\Y) Nanotec’

PLUG & DRIVE
A record contains the following settings and commands:
Setting Para- | See section Page
meter
Position mode P’ 2.6.6 Setting positioning mode 43
Travel distance 's' 2.6.8 Setting the travel distance 46
Initial step frequency u' 2.6.9 Setting the minimum 47
frequency
Maximum step frequency '0' 2.6.10 Setting the maximum 48
frequency
Second maximum step n' 2.6.11 Setting the maximum 48
frequency frequency 2
Acceleration and braking b’ 2.6.12 Setting the acceleration 49
ramp ramp
Direction of rotation 'd' 2.6.15 Setting the direction of 50
rotation
Reversal of direction of 't 2.6.16 Setting the change of 51
rotation for repeat direction
records
Repetitions 'w' 2.6.17 Setting the repetitions 51
Pause between 'P' 2.6.18 Setting the record pause 52
repetitions and
continuation records
Record number of 'N' 2.6.19 Setting the continuation 52
continuation record record

\Y) Nanotec’

PLUG & DRIVE

2.6.6 Setting positioning mode (old scheme)
Parameters
Character | Permissible Writable Data type Default value
values
' 1to 17 Yes u8 (integer) | 1

Firmware response

Confirms the command through an echo.

If invalid values are set for motor mode "!" and positioning mode 'p', the motor mode "'
retains its value and the positioning mode 'p' is set to 1.

Description

The motor modes (command ") and positioning modes (command 'p') can be selected
either according to the old scheme or according to the new scheme, see Section 2.6.7
Setting the positioning mode (new scheme).

The value combinations of the old scheme for motor mode "' and positioning mode 'p'

are:

Positioning mode (!=1)

p=1 Relative positioning;
The command 2.6.8 Setting the travel distance 's' specifies the travel
distance relative to the current position.
The command 2.6.15 Setting the direction of rotation 'd' specifies the
direction.
The parameter 2.6.8 Setting the travel distance 's' must be positive.

p=2 Absolute positioning;
Command 2.6.8 Setting the travel distance 's' defines the target
position relative to the reference position.
Command 2.6.15 Setting the direction of rotation 'd" is ignored.

p=3 Internal reference run;
The motor runs with the lower speed in the direction set in command
2.6.15 Setting the direction of rotation 'd' until it reaches the index line
of the encoder. Then the motor runs a fixed number of steps to leave
the index line again. For the direction of free travel, see command
2.5.6 Setting the limit switch behavior 'I'. This mode is only useful for
motors with integrated and connected encoders.

p=4 External reference run;
The motor runs at the highest speed in the direction set in command
2.6.15 Setting the direction of rotation 'd' until it reaches the limit
switch. Then a free run is performed, depending on the setting.
See command 2.5.6 Setting the limit switch behavior 'I'.

Speed mode (1=2)

p=1 Speed mode;
When the motor is started, the motor increases in speed to the
maximum speed with the set ramp. Changes in the speed or direction
of rotation are performed immediately with the set ramp without
having to stop the motor first.

p=2 Not assigned

p=3 Internal reference run;
see Positioning mode

p=4 External reference run;
see Positioning mode

\Y) Nanotec’

PLUG & DRIVE

Reading out

Flag positioning mode (!1=3)

p=1 Flag positioning mode;

After starting, the motor runs up to the maximum speed. After arrival
of the trigger event (command 2.7.9 Actuating the trigger ‘T or trigger
input) the motor continues to travel the selected travel distance
(command 2.6.8 Setting the travel distance 's') and changes its speed
to the maximum speed 2 (command 2.6.11 Setting the maximum
frequency 2 'n') for this purpose.

p=2 Not assigned

p=3 Internal reference run;
see Positioning mode

p=4 External reference run;
see Positioning mode

Clock direction mode (!=4)

p=1 Manual left.
p=2 Manual right.
p=3 Internal reference run;

see Positioning mode

p=4 External reference run;
see Positioning mode

Analog mode (1=5)

| Not applicable

Joystick mode (!1=6)

| Not applicable

Analog positioning mode (1=7)

p=1 Analog positioning mode
p=2 Not assigned
p=3 Internal reference run;

see Positioning mode

p=4 External reference run;
see Positioning mode

HW reference mode (!=8)

| Not applicable

Torque mode (1=9)

| Not applicable

CL quick test mode (!1=101)

p=1 | CL quick test mode
CL test mode (1=101)
p=2 | CL test mode

Command 'Zp' is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

2.6.7 Setting the positioning mode (new scheme)
Parameters
Character | Permissible Writable Data type Default value
values
' 1to 17 Yes u8 (integer) | 1

Firmware response
Confirms the command through an echo.

If invalid values are set for motor mode '!" and positioning mode 'p', the motor mode "'
retains its value and the positioning mode 'p' is set to 1.

Description

The motor modes (command ") and positioning modes (command 'p') can be selected
either according to the old scheme or according to the new scheme, see Section 2.6.6

Setting positioning mode (old scheme).

In the new scheme all motor modes and positioning modes of the old scheme run
under the same motor mode 10 ("110') and the respective positioning mode ('p1' to
'p17'). This means the motor mode and the positioning mode can be saved in the
records.

The value combinations of the new scheme for motor mode "' and positioning mode 'p’
are:

Positioning mode (!1=10)

p=1 Relative positioning;

The command 2.6.8 Setting the travel distance 's' specifies the travel
distance relative to the current position.

The command 2.6.15 Setting the direction of rotation 'd' specifies the
direction.

The parameter 2.6.8 Setting the travel distance 's' must be positive.

p=2 Absolute positioning;

Command 2.6.8 Setting the travel distance 's' defines the target
position relative to the reference position.

Command 2.6.15 Setting the direction of rotation 'd" is ignored.

p=3 Internal reference run;

The motor runs with the lower speed in the direction set in command
2.6.15 Setting the direction of rotation 'd" until it reaches the index line
of the encoder. Then the motor runs a fixed number of steps to leave
the index line again. For the direction of free travel, see command
2.5.6 Setting the limit switch behavior 'I'. This mode is only useful for
motors with integrated and connected encoders.

p=4 External reference run;

The motor runs at the highest speed in the direction set in command
2.6.15 Setting the direction of rotation 'd" until it reaches the limit
switch. Then a free run is performed, depending on the setting.

See command 2.5.6 Setting the limit switch behavior 'I'.

Speed mode (!1=10)

p=5 Speed mode;

When the motor is started, the motor increases in speed to the
maximum speed with the set ramp. Changes in the speed or direction
of rotation are performed immediately with the set ramp without
having to stop the motor first.

p=3 Internal reference run;
see Positioning mode

\Y) Nanotec’

PLUG & DRIVE

Reading out

2.6.8

Parameter

p=4 External reference run;
see Positioning mode

Flag positioning mode (!1=10)

p=6 Flag positioning mode;

frequency 2 'n') for this purpose.

After starting, the motor runs up to the maximum speed. After arrival
of the trigger event (command 2.7.9 Actuating the trigger 'T' or trigger
input) the motor continues to travel the selected travel distance
(command 2.6.8 Setting the travel distance 's') and changes its speed
to the maximum speed 2 (command 2.6.11 Setting the maximum

p=3 Internal reference run;
see Positioning mode

p=4 External reference run;
see Positioning mode

Clock direction mode (!1=10)

p=7 Manual left.
p=8 Manual right.
p=9 Internal reference run;

see Positioning mode

p=10 External reference run;
see Positioning mode

Analog mode (1=10)

p=11 | Analog mode

Joystick mode (!1=10)

p=12 | Joystick mode

Analog positioning mode (!=10)
p=13 Analog positioning mode
p=3 Internal reference run;

see Positioning mode

p=4 External reference run;
see Positioning mode

HW reference mode (1=10)

p=14 | HW reference mode

Torque mode (!=10)

p=15 | Torque mode

CL quick test mode (1=10)

p=16 | CL quick test mode

CL test mode (!=10)

p=17 | CL test mode

Command 'Zp' is used to read out the current valid value.

Setting the travel distance

Character | Permissible Writable

Data type

Default value

\) Nanotec’

PLUG & DRIVE

values

s' -2147483648 to Yes s32 (integer) | O
+2147483647

Firmware response

Confirms the command through an echo.

Description

This command specifies the travel distance in (micro-)steps. Only positive values are
allowed for the relative positioning. The direction is set with command 2.6.15 Setting
the direction of rotation 'd'.

For absolute positioning, this command specifies the target position. Negative values
are allowed in this case. The direction of rotation from command 2.6.15 Setting the
direction of rotation 'd' is ignored since it can be derived from the current position and
the target position.

The value range is that of a 32-bit signed integer (range of values * 231).

In the adaptive mode, this parameter refers to full steps.

Reading out

Command 'Zs' is used to read out the current valid value.

2.6.9 Setting the minimum frequency

Parameter

Character | Permissible Writable Data type Default value
values

u' 1 to 160000 Yes u32 (integer) | 1

Firmware response

Confirms the command through an echo.

Description
Specifies the minimum speed in Hertz (steps per second).
When a record starts, the motor begins rotating with the minimum speed. It then
accelerates with the set ramp (command 2.6.12 Setting the acceleration ramp 'b'") to
the maximum speed (command 2.6.10 Setting the maximum frequency '0').
Reading out

Command 'Zu' is used to read out the current valid value.

\) Nanotec’

PLUG & DRIVE

2.6.10 Setting the maximum frequency
Parameter
Character | Permissible Writable Data type Default value
values
'0' 1 to 1000000 Yes u32 (integer) | 1

Firmware response

Confirms the command through an echo.

Description
Specifies the maximum speed in Hertz (steps per second).
The maximum speed is reached after first passing through the acceleration ramp.
Supports higher frequencies in open-loop operation:
o 1/2 step: 32,000 Hz
o 1/4 step: 64,000 Hz
o 1/8 step: 128,000 Hz
e 1/16 step: 256,000 Hz
o 1/32 step: 512,000 Hz
e 1/64 step: 1,000,000 Hz
Reading out
Command 'Zo' is used to read out the current valid value.
2.6.11 Setting the maximum frequency 2
Parameter
Character | Permissible Writable Data type Default value
values
n' 1 to 1000000 Yes u32 (integer) | 1

Firmware response

Confirms the command through an echo.

Description
Specifies the maximum speed 2 in Hertz (steps per second).
The maximum speed 2 is reached after first passing through the acceleration ramp.
Supports higher frequencies in open-loop operation:
e 1/2 step: 32,000 Hz
o 1/4 step: 64,000 Hz
e 1/8 step: 128,000 Hz
e 1/16 step: 256,000 Hz
o 1/32 step: 512,000 Hz
e 1/64 step: 1,000,000 Hz

This value is only applied in the flag positioning mode. See command 2.6.6 Setting
positioning mode 'p'.

\Y) Nanotec’

PLUG & DRIVE

Reading out
Command 'Zn' is used to read out the current valid value.
2.6.12 Setting the acceleration ramp
Parameters
Character | Permissible Writable Data type Default value
values
'b' 1 to 65535 Yes u16 (integer) | 1

Firmware response

Confirms the command through an echo.

Description
Specifies the acceleration ramp.
To convert the parameter to acceleration in Hz/ms, the following formula is used:
Acceleration in Hz/ms = ((3000.0 / sqrt((float)<parameter>)) - 11.7).
Reading out
Command 'Zb' is used to read out the current valid value.
2.6.13 Setting the brake ramp
Parameters
Character | Permissible Writable Data type Default value
values
'B' 0 to 65535 Yes u16 (integer) | O

Firmware response

Confirms the command through an echo.

Description

Specifies the brake ramp.

Reading out

Command 'ZB' is used to read out the current valid value.

\Y) Nanotec’

PLUG & DRIVE
2.6.14 Setting the quickstop ramp
Parameters
Character | Permissible Writable Data type Default value
values
'H 0 to 8000 Yes u16 (integer) | O
Firmware response
Confirms the command through an echo.
Description
Specifies the quickstop ramp.
Quickstop: Used, for example, if the limit switch is overrun.
Reading out
Command 'ZH' is used to read out the current valid value.
2.6.15 Setting the direction of rotation
Parameter
Character | Permissible Writable Data type Default value
values
d' 0 and 1 Yes u8 (integer) | 0

Firmware response

Confirms the command through an echo.

Description
Sets the direction of rotation:
0: Left
1: Right

Reading out

Command 'Zd' is used to read out the current valid value.

\Y) Nanotec’

PLUG & DRIVE

2.6.16

Parameter

Setting the change of direction

Character | Permissible Writable Data type Default value
values
‘t' 0and 1 Yes u8 (integer) | O

Firmware response

Description

Reading out

2.6.17

Parameter

Confirms the command through an echo.

With repetition records, the rotation direction of the motor is reversed with every
repetition if this parameter is set to '1'. See command 2.6.17 Setting the repetitions

‘W'

Command 'Zt' is used to read out the current valid value.

Setting the repetitions

Character | Permissible Writable Data type Default value
values
‘W 0to 254 Yes u8 (integer) | 0

Firmware response

Description

Reading out

Confirms the command through an echo.

Specifies the number of repetitions of the current record.

A value of 0 indicates an endless number of repetitions.

Normally, the value is set to 1 for one repetition.

Command 'ZW' is used to read out the current valid value.

\Y) Nanotec’

PLUG & DRIVE
2.6.18 Setting the record pause
Parameter
Character | Permissible Writable Data type Default value
values
P 0 to 65535 Yes u16 (integer) | O

Firmware response

Confirms the command through an echo.

Description
Specifies the pause between record repetitions or between a record and a
continuation record in ms (milliseconds).
If a record does not have a continuation record or a repetition, the pause is not
executed and the motor is ready again immediately after the end of the run.
Reading out
Command 'ZP' is used to read out the current valid value.
2.6.19 Setting the continuation record
Parameter
Character | Permissible Writable Data type Default value
values
'N' 0to 32 Yes u8 (integer) | 0

Firmware response

Confirms the command through an echo.

Description
Specifies the number of the continuation record. If the parameter is set to '0', a
continuation record is not performed.

Reading out

Command 'ZN' is used to read out the current valid value.

\Y) Nanotec’

PLUG & DRIVE

2.7 Mode-specific commands
2.7.1 Setting the dead range for the joystick mode
Parameter
Character | Permissible Writable Data type Default value
values
= 0to 100 Yes u8 (integer) | O

Firmware response

Confirms the command through an echo.

Description
Sets the dead range in joystick mode.
In joystick mode, the motor can be moved forward and backward via a voltage on the
analog input.
The value range halfway between the maximum and minimum voltages in which the
motor does not rotate is the dead range. It is specified as a percentage of the range
width.
Reading out
Command 'Z='is used to read out the current setting of the dead range.
2.7.2 Setting the filter for the analog and joystick modes
Parameter
Character | Permissible Writable Data type Default value
values
'f! 0 to 255 Yes u8 (integer) | 0

Firmware response

Confirms the command through an echo.

Description
In the analog and joystick modes, the analog input is used to set the speed. Command
'f' is used to set the number of samples averaged to determine the final value.
Reading out
Command 'Zf' is used to read out the current setting of the value.
f = 8-bit (Bit 0-3: number of samples; Bit 4-7: size of the hysteresis) + 16

Example: f=50: Smoothing: Recursive filter over 4 values
f=84: Strong smoothing: Recursive filter over 16 values

\) Nanotec’

PLUG & DRIVE

2.7.3 Setting the minimum voltage for the analog mode
Parameter
Character | Permissible Writable Data type Default value
values
Q' -100 to +100 Yes s8 (integer) | -100

Firmware response

Confirms the command through an echo.

Description

Specifies the beginning of the range of the analog input in 0.1V steps.
Reading out

Command 'ZQ' is used to read out the current valid value.
2.7.4 Setting the maximum voltage for the analog mode
Parameter

Character | Permissible Writable Data type Default value
values
'R' -100 to +100 Yes s8 (integer) | 100

Firmware response

Confirms the command through an echo.

Description

Specifies the end of the range of the analog input in 0.1V steps.
Reading out

Command 'ZR' is used to read out the current valid value.
2.75 Resetting switch-on numerator
Parameters

Character | Permissible Writable Data type Default value
values
%' 1 Yes u32 (integer) | 1

Firmware response

Confirms the command through an echo.

Description
The switch-on numerator is incremented by “1” each time the current is switched on
and specifies how often the controller has been switched on since the last reset.
If the value is set to '1', the switch-on numerator is reset to “0”.

Reading out

Command 'Z%' is used to read out the current valid value.

\Y) Nanotec’

PLUG & DRIVE

2.7.6 Adjusting the time until the current reduction
Parameters
Character | Permissible Writable Data type Default value
values
'G' 0 to 10000 Yes u16 (integer) | 80
Unit
ms

Firmware response

Confirms the command through an echo.

Description

The value defines the wait time at standstill until the current is reduced.
Reading out

Command 'ZG' is used to read out the current valid value.
2.7.7 Increasing the speed
Parameter

Character | Permissible Writable Data type Default value
values
"+ - No — —

Firmware response

Confirms the command through an echo.

Description
Increases the speed in the speed mode by 100 steps/s.
2.7.8 Reducing the speed
Parameter
Character | Permissible Writable Data type Default value
values
- No - -

Firmware response

Confirms the command through an echo.

Description

Decreases the speed in the speed mode by 100 steps/s.

\Y) Nanotec’

PLUG & DRIVE

2.7.9 Actuating the trigger
Parameter
Character | Permissible Writable Data type Default value
values
|T| _ No — —

Firmware response

Confirms the command through an echo.

Description

Trigger for the flag positioning mode.

Before triggering, the motor travels at a constant speed.

After triggering, the motor finishes travelling the set distance from the position where
triggering occurred, and then stops.

\Y) Nanotec’

PLUG & DRIVE

2.8 Commands for JAVA program
2.8.1 Transferring a Java program to the controller
Parameters
Character | Permissible Writable Data type Default value
values
'J 0 to 268500991 Yes s32 (integer) | O

Firmware response

Confirms the command through an echo.

Description
Carried out independently by NanoPro or NanoJEasy.
2.8.2 Starting a loaded Java program
Parameters
Character | Permissible Writable Data type Default value
values
"(JA 0 No u8 (integer) | 0

Firmware response

Confirms the command with “(JA+” if the program was successfully started or with
“(JA-" if the program could not be started (no valid program or no program at all
loaded in the controller).

Description
The command starts the Java program loaded in the controller.
2.8.3 Stopping the running Java program
Parameters
Character | Permissible Writable Data type Default value
values
'Js 0 No u8 (integer) | O

Firmware response
Confirms the command with “(JS+” if the program was successfully stopped or with
“(JS-” if the program had already terminated.

Description

The command stops the Java program that is currently running.

\Y) Nanotec’

PLUG & DRIVE
2.8.4 Verifying loaded Java program
Parameters
Character | Permissible Writable Data type Default value
values
'ar 0 No u8 (integer) | O

Firmware response

In response to the command, the controller returns “ECAFFEQ1” as the program ID.

Description
The command loads the current program from the EEPROM and initializes the VM.
This initialization is also carried out automatically when switching on the controller and
when transferring the program to the PD4 utility.
2.8.5 Automatically starting the Java program when switching on the
controller
Parameters
Character | Permissible Writable Data type Default value
values
'(JB' 0 to 255 Yes u8 (integer) | O

Firmware response

Confirms the command with “(JB=1" if the program is started automatically, or with
“(JB=0" if the program is not started automatically.

Description

This command is used to specify whether the program is to be started automatically:

e “0” = do not start program automatically

o “1” = start program automatically
2.8.6 Reading out error of the Java program
Parameters

Character | Permissible Writable Data type Default value
values
'JE' 0 to 255 No u8 (integer) | O

Firmware response
Returns the index of the error memory with the last error that occurred. See Section
3.8 Possible Java error messages.

Description

This command reads out the last error.

\Y) Nanotec’

PLUG & DRIVE

2.8.7 Reading out the warning of the Java program
Parameters
Character | Permissible Writable Data type Default value
values
AW 0 to 255 No u8 (integer) | O

Firmware response

Returns the last warning that occurred. Currently only:

e “0” =no warning

e “WARNING_FUNCTION_NOT_SUPPORTED”

Description

This command reads out the last warning.

\Y) Nanotec’

PLUG & DRIVE

2.9 Closed loop settings
29.1 Activating closed-loop mode
Parameters
Character Permissible Writable Data type Default value
values
".CL_enable' | 0Oand 1 Yes u8 (integer) | O

Firmware response

Confirms the command through an echo.

Description

If the value is set to "1", the firmware is instructed to activate the closed loop. This is
only possible if a special reference run was performed since the unit was last switched
on (mode 8 "I8").

Important conditions

The following conditions must be met when activating the closed loop:

e The "CL_Motor_pp", "CL_rotenc_inc" and "CL_rotenc_rev" settings must agree
with the technical data of the connected stepper motor.
For more information, see commands 2.9.9 Setting the motor pole pairs, 2.9.10
Setting the number of increments and 2.9.11 Setting the number of revolutions.

e Every time a new motor is connected (even if it is the same type), a calibration run
must be performed (mode 101 "1101").

ATTENTION:
If one of these conditions is not met, the motor may accelerate to a level that exceeds
its maximum mechanical load capacity!

Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

2.9.2 Reading out the closed loop mode status
Parameters
Character Permissible | Writable Data type Default value
values
"“CL_is_enabled' | 0 and 1 No u8 (integer) | 0

Firmware response
Returns the status:
¢ “0” =not enabled
e “1”=enabled

Description
Reads out the status of the closed loop mode.
2.9.3 Setting the tolerance window for the limit position
Parameters
Character Permissible Writable Data type | Default
values value
":CL_position_window' | 0 to Yes u32 0
2147483647 (integer)
Unit
Increments

Firmware response

Confirms the command through an echo.

Description

If the closed loop is active, this is a criterion for when the firmware considers the limit
position to have been reached. The parameter defines a tolerance window in
increments of the encoder.

If the position actually measured is within the desired limit position + — the tolerance
that is set in this parameter, and if this condition is met over a certain period, the limit
position is considered to have been reached.

The time for this time window is set in the "CL_position_window_time" parameter. See
command 2.9.4 Setting the time for the tolerance window of the limit position.
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

294

Parameters

Setting the time for the tolerance window of the limit position

Character Permissible | Writable Data Default
values type value
":CL_position_window_time' | 0 to 65535 Yes u1é 0
(integer)
Unit
ms

Firmware response

Description

Reading out

2.9.5

Parameters

Confirms the command through an echo.

Specifies the time in milliseconds for the "CL_position_window" parameter.
For more information, see command 2.9.3 Setting the tolerance window for the limit

position.

If the keyword is sent without a “= + value”, the current setting of the value can be

read out.

Setting the maximum allowed following error

Character Permissible | Writable | Data Default
values type value
":CL_following_error_window' | O to Yes u32 100
2147483647 (integer)
Unit
Increments

Firmware response

Description

Reading out

Confirms the command through an echo.

If the closed loop is active, this parameter defines the maximum allowed following
error in increments of the encoder.

If, at a certain point in time, the actual position differs from the setpoint position by
more than this parameter, a position error is output and the closed loop is switched off.

In addition, the "CL_following_error_timeout" parameter can be used to specify for
how long the following error may be larger than the tolerance without triggering a
position error. See command 2.9.6 Setting the time for the maximum following error.

If the keyword is sent without a “= + value”, the current setting of the value can be

read out.

\Y) Nanotec’

PLUG & DRIVE

2.9.6 Setting the time for the maximum following error
Parameters
Character Permissible | Writable | Data Default
values type value
":CL_following_error_timeout' | 0 to 65535 Yes u16 100
(integer)
Unit
ms

Firmware response

Confirms the command through an echo.

Description
This parameter can be used to specify in milliseconds for how long the following error
may be greater than the tolerance without triggering a position error. See command
2.9.5 Setting the maximum allowed following error.
Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.9.7 Maximum speed deviation
Parameters
Character Permissible | Writable Data Default
values type value
":CL_speed_error_window' | 0 to Yes u32 150
2147483647 (integer)
Unit
Increments

Firmware response

Confirms the command through an echo.

Description
If the closed loop is active, this parameter defines the maximum allowed speed
deviation.
In addition, the “:CL_speed_error_timeout” can be used to specify for how long the
speed deviation may be greater than the tolerance. For more information, see
command 2.9.8 Time for maximum speed deviation.

Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

2.9.8 Time for maximum speed deviation
Parameters
Character Permissible | Writable Data Default
values type value
":CL_speed_error_timeout' | 0 to 65535 Yes u16 250
(integer)
Unit
ms

Firmware response

Confirms the command through an echo.

Description
This parameter can be used to specify in milliseconds for how long the speed
deviation may be greater than the tolerance. For more information, see command
2.9.7 Maximum speed deviation.
Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.9.9 Setting the motor pole pairs
Parameters
Character Permissible Writable Data type Default value
values
":CL_motor_pp' | 11065535 Yes ul16 50
(integer)
Unit

Number of pole pairs

Firmware response

Confirms the command through an echo.

Description
The parameter sets the number of pole pairs of the connected motor.

Note:
After this parameter is changed, the firmware must be restarted (disconnect power).

The number of pole pairs equals 1/4 of the number of full steps per revolution. The
adjustable values are currently 50 and 100. If other values are set, this will result in the
closed loop not functioning properly. However, even in this case, a conversion for the
error correction without the closed loop will still function.

This parameter corresponds with the command 2.5.8 Setting the step angle 'a'.
If the "CL_motor_pp" or 'a' parameter is changed, the associated parameter is also
changed.

\Y) Nanotec’

PLUG & DRIVE

The values are converted according to the following formula:
CL_motor_pp =900

COMM_CMD_SETSTEPANGLE

Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.9.10 Setting the number of increments
Parameters
Character Permissible Writable Data type | Default value
values
".CL_rotenc_inc' | 11to 65535 Yes u16 2000
(integer)
Unit
Increments

Firmware response

Confirms the command through an echo.

Description

This parameter specifies the number of increments of the encoder for a specific
number of revolutions. The number of revolutions can be set using the
"CL_rotenc_rev" parameter. See command 2.9.11 Setting the number of revolutions.

Currently, the values 1600 and 2000 are supported for the closed loop. If other values
are set, this will result in the closed loop not functioning properly. However, even in
this case, a conversion for the error correction without the closed loop will still function.

Note:
After this parameter is changed, the firmware must be restarted (disconnect power).
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE
2.9.11 Setting the number of revolutions
Parameters
Character Permissible Writable Data type Default value
values
":CL_rotenc_rev' | 1 Yes u16 1
(integer)
Unit
Revolutions

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the number of revolutions for the "CL_rotenc_inc" parameter.
See command 2.9.10 Setting the number of increments.
This setting is available for compatibility reasons. It should always be set to "1". If
other values are set, this will result in the closed loop not functioning properly.
However, even in this case, a conversion for the error correction without the closed
loop will still function.
Note:
After this parameter is changed, the firmware must be restarted (disconnect power).
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

2.9.12 Setting the numerator of the P component of the speed controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_KP_v_Z' | 0to 65535 Yes u16 (integer) | 1
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the proportional component of the speed
controller.
Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.9.13 Setting the denominator of the P component of the speed
controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_KP_v_N'|0to15 Yes u8 (integer) | 3
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the denominator of the proportional component of the speed
controller as a power of 2.
0=1
1=2
2=4
3=8
etc.
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

2.9.14

Parameters

Setting the numerator of the | component of the speed controller

Character Permissible Writable Data type Default value
values
"CL_KIl_v_Z' | 0to 65535 Yes u16 1
(integer)
Unit
Numerator

Firmware response

Description

Reading out

2.9.15

Parameters

Confirms the command through an echo.

This parameter specifies the numerator of the integral component of the speed

controller.

If the keyword is sent without a “= + value”, the current setting of the value can be

read out.

Setting the denominator of the | component of the speed controller

Character Permissible Writable Data type Default value
values

“"CL Kl v N |Oto15 Yes u8 (integer) | 4

Unit

Denominator as a power of 2

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the denominator of the integral component of the speed
controller as a power of 2.

0="1
1=2
2=4
3=8
etc.

If the keyword is sent without a “= + value”, the current setting of the value can be

read out.

\) Nanotec’

PLUG & DRIVE

2.9.16 Setting the numerator of the D component of the speed controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_KD_ v_Z'| 0to 65535 Yes u16 0
(integer)
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the differential component of the speed
controller.
Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.9.17 Setting the denominator of the D component of the speed
controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_KD v 7' | 0to15 Yes u8 (integer) | O
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the denominator of the differential component of the speed
controller as a power of 2.
0="1
1=2
2=4
3=8
etc.
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

2.9.18

Parameters

Setting the numerator of the P component of the cascading speed
controller

Character Permissible Writable Data type Default value
values
"CL_KP_csv_Z' | 0to 65535 Yes ul6 0
(integer)
Unit
Numerator

Firmware response

Description

Reading out

2.9.19

Parameters

Confirms the command through an echo.

This parameter specifies the numerator of the proportional component of the
cascading speed controller.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

Setting the denominator of the P component of the cascading
speed controller

Character Permissible Writable Data type Default value
values

"CL_KP_ csv_N'|0to15 Yes u8 (integer) | O

Unit

Denominator as a power of 2

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the denominator of the proportional component of the
cascading speed controller as a power of 2.

0="1
1=2
2=4
3=8
etc.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

2.9.20 Setting the numerator of the | component of the cascading speed
controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_KI _csv_Z'| 0to 65535 Yes u16 0
(integer)
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the integral component of the cascading
speed controller.
Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.9.21 Setting the denominator of the | component of the cascading
speed controller
Parameters
Character Permissible Writable Data type Default value
values
“CL_KIl csv_N'|0Oto15 Yes u8 (integer) | O
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the denominator of the integral component of the cascading
speed controller as a power of 2.
0=1
1=2
2=4
3=8
etc.
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

2.9.22

Parameters

Setting the numerator of the D component of the cascading speed
controller

Character Permissible Writable Data type Default value
values
""CL_KD_csv_Z' | 0to 65535 Yes ul6 0
(integer)
Unit
Numerator

Firmware response

Description

Reading out

2.9.23

Parameters

Confirms the command through an echo.

This parameter specifies the numerator of the differential component of the cascading
speed controller.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

Setting the denominator of the D component of the cascading
speed controller

Character Permissible Writable Data type Default value
values

"CL_KD csv_N'|0to15 Yes u8 (integer) | O

Unit

Denominator as a power of 2

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the denominator of the differential component of the
cascading speed controller as a power of 2.

0=1
1=2
2=4
3=8
etc.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

2.9.24 Setting the numerator of the P component of the position
controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_KP_s 7' | 0to 65535 Yes ul6 100
(integer)
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the proportional component of the position
controller.
Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.9.25 Setting the denominator of the P component of the position
controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_KP_s N'|0to15 Yes u8 (integer) | O
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the denominator of the proportional component of the
position controller as a power of 2.
0=1
1=2
2=4
3=8
etc.
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

2.9.26

Parameters

Setting the numerator of the | component of the position controller

Character Permissible Writable Data type Default value
values
"CL_Kl_s 7' | 0t0 65535 Yes u16 1
(integer)
Unit
Numerator

Firmware response

Description

Reading out

2.9.27

Parameters

Confirms the command through an echo.

This parameter specifies the numerator of the integral component of the position
controller.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

Setting the denominator of the | component of the position
controller

Character Permissible Writable Data type Default value
values

"CL_KIl.s N'|0to15 Yes u8 (integer) | O

Unit

Denominator as a power of 2

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the denominator of the integral component of the position
controller as a power of 2.

0=1
1=2
2=4
3=8
etc.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

2.9.28 Setting the numerator of the D component of the position
controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_KD s 7' | 0to 65535 Yes ul6 200
(integer)
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the differential component of the position
controller.
Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.9.29 Setting the denominator of the D component of the position
controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_ KD s N'|0to15 Yes u8 (integer) | O
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the denominator of the differential component of the position
controller as a power of 2.
0=1
1=2
2=4
3=8
etc.
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

2.9.30

Parameters

Setting the numerator of the P component of the cascading
position controller

Character Permissible Writable Data type Default value
values
"CL_KP_css_Z' | 0to 65535 Yes ul6 0
(integer)
Unit
Numerator

Firmware response

Description

Reading out

2.9.31

Parameters

Confirms the command through an echo.

This parameter specifies the numerator of the proportional component of the
cascading position controller.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

Setting the denominator of the P component of the cascading
position controller

Character Permissible Writable Data type Default value
values

"CL_KP css N'|Oto15 Yes u8 (integer) | O

Unit

Denominator as a power of 2

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter specifies the denominator of the proportional component of the
cascading position controller as a power of 2.

0="1
1=2
2=4
3=8
etc.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

2.9.32 Setting the numerator of the | component of the cascading
position controller

Parameters
Character Permissible Writable Data type Default value
values
"CL_KI_css_Z' | 0to 65535 Yes u16 0
(integer)
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the integral component of the cascading
position controller.
Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.9.33 Setting the denominator of the | component of the cascading
position controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_KIl css_N'|0to15 Yes u8 (integer) | 0
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the denominator of the integral component of the cascading
position controller as a power of 2.
0=1
1=2
2=4
3=8
etc.
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

2.9.34 Setting the numerator of the D component of the cascading
position controller
Parameters
Character Permissible Writable Data type Default
values value
"CL_KD css_Z' | 0to 65535 Yes u16 (integer) 0
Unit
Numerator

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the numerator of the differential component of the cascading
position controller.
Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.9.35 Setting the denominator of the D component of the cascading
position controller
Parameters
Character Permissible Writable Data type Default value
values
"CL_KD css_N'|0to15 Yes u8 (integer) | 0
Unit

Denominator as a power of 2

Firmware response

Confirms the command through an echo.

Description
This parameter specifies the denominator of the differential component of the
cascading position controller as a power of 2.
0=1
1=2
2=4
3=8
etc.
Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

2.10 Motor-dependent correction values determined by
test runs for the closed loop mode

General information

The first time a controller with the associated motor is used, a test run must be started.
Here, motor-dependent correction values are determined by the controller and stored.

These correction values can be read and stored with NanoPro in order to be able to
write them back again if the controller is changed.

2.10.1 Reading out the encoder/motor offset
Parameters
Character Permissible Writable Datatype | Default value
values
":CL_poscnt_offset' | -32768 to Yes s16 0
+32767 (integer)

Firmware response

Confirms the command through an echo.

Description
The offset between the encoder and motor determined during the test run is read out.
2.10.2 Reading out the load angle of the motor
Parameters
Character Permissible | Writable Datatype | Default value
values
"CL_la_a'to -32768 to Yes s16 0
"“CL_la_j' +32767 (integer)

Firmware response

Confirms the command through an echo.

Description

The speed-dependent data of the load angle of the motor (closed-loop load angle)
determined during the test run are read out:

e CL la_a
e ClL-la_b
e Cl-la c
e ClL-la_d
e Cl-la_e
o ClL-la_f

e Cl-la_g
e ClL-la_h
o ClL-la_i

e Cl-la_j

\) Nanotec’

PLUG & DRIVE

2.10.3

Parameters

Reading out the correction values of the speed controller

Character Permissible | Writable Datatype | Default value
values
"CL_ola v _a'to -32768 to Yes s16 0
"CL_ola v g +32767 (integer)

Firmware response

Description

2.10.4

Parameters

Confirms the command through an echo.

The data of the load angle of the speed controller (closed-loop load angle velocity)
determined during the test run are read out:

e CL ola v a
e CL olavb
e CL olavec
e CLolavd
e CL ola_v_e
e CL ola v f
e CL ola v g

Reading out the correction values of the current controller

Character Permissible | Writable Datatype | Default value
values
""CL_ola_i_a'to -32768 to Yes s16 0
"“CL_ola_i_g' +32767 (integer)

Firmware response

Description

Confirms the command through an echo.

The data of the load angle of the current controller (closed-loop load angle current)
determined during the test run are read out:

e CL ola_i a

e CL ola_i_b
e CL oolaic
e CLoolaid
e CL ola_i_e
e CL oolai f

e ClL ola_i g

\Y) Nanotec’

PLUG

& DRIVE

2.10.5

Parameters

Reading out the correction values of the position controller

Character Permissible | Writable Datatype | Default value
values
"“CL_ola_| _a'to -2147483648 Yes s32 0
“CL_ola_| ¢ to (integer)
+2147483647

Firmware response

Description

Confirms the command through an echo.

The data of the load angle of the position controller (closed-loop load angle position)
determined during the test run are read out:

CL ola_I a
CLolalb
CL ola_I ¢
CL oola ld
CL ola | e
CL ola_I f

CL_ola_I g

\) Nanotec’

PLUG & DRIVE

2.11

2111

Description

Examples

Scope mode

Integration of a scope

In the scope mode, the values to be measured are selected and transferred to the
motor. The motor then carries out a measurement and returns the result in real time to
the NanoPro controller software.

e The transferred data are binary.
e The data are transferred in the order of priority.
o The last data byte of each data packet contains a CRC8 checksum.

Each data source can be selected separately:
:Capt_Time=10 — sends the selected data every 10 ms.
:Capt_Time=0 — ends the scope mode

:Capt_sPos=1 — the setpoint position is selected
:Capt_sPos=0 — the setpoint position is deselected

By default no data source is selected.

Data word when :Capt_sCurr=1 and :Capt_iln=1
:Capt_sCurr_BYTE

:Capt_iln_BYTE_HI

:Capt_iln_BYTE_LO CRC

\Y) Nanotec’

PLUG & DRIVE

2.11.2

Parameters

Description

Reading out

Setting the sample rate

Character Permissible Writable Data type Default value
values
":Capt_Time' | 0 to 65535 Yes u16 0
(integer)

Priority

Unit

ms (milliseconds)

The parameter defines the time interval in ms in which the selected data are sent. The

value range is "Unsigned 16".

"0" deactivates the scope function.

Example

:Capt_Time=10 sends the selected data every 10 ms.

:Capt_Time=0 ends the scope mode

If the keyword is sent without a “= + value”, the current setting of the value can be

read out.

\Y) Nanotec’

PLUG & DRIVE

2.11.3

Parameters

Description

2.11.4

Parameters

Description

Reading out the setpoint position of the ramp generator

Character Permissible Writable Data type Default value
values

":Capt_sPos' | 0and 1 Yes u8 (integer) | 0

Priority

1

Unit

Steps

Delivers the setpoint position generated by the ramp generator.

Example
:Capt_sPos=1
:Capt_sPos=0

the setpoint position is selected

the setpoint position is deselected

Reading out the actual position of the encoder

Character Permissible Writable Data type Default value
values
":Capt_iPos' | 0 and 1 Yes u8 (integer) | O
Priority
2
Unit
Steps

Returns the current encoder position.

Example
:Capt_iPos=1
:Capt_iPos=0

the actual position is selected

the actual position is deselected

\Y) Nanotec’

PLUG & DRIVE

2.11.5 Reading out the setpoint current of the motor controller
Parameters
Character Permissible Writable Data type Default value
values
":Capt_sCurr' | 0Oand 1 Yes u8 (integer) | 0
Priority
3
Unit
None

32767 corresponds to 150% of the maximum current (the value can also be negative).

Description
Delivers the setpoint current used for driving the motor.
Example
:Capt_sCurr=1 the setpoint current is selected
:Capt_sCurr=0 the setpoint current is deselected
2.11.6 Reading out the actual voltage of the controller
Parameters
Character Permissible Writable Data type Default value
values
":Capt_iVolt' | 0Oand 1 Yes u8 (integer) | 0
Priority
4
Unit
Value range 0 — 1023 (10-bit)
1023 is equivalent to 66.33 V
0 is equivalentto 0 V
Description

Delivers the voltage applied at the controller.
Example

:Capt_iVolt=1 the applied voltage is selected
:Capt_iVolt=0 the applied voltage is deselected

\Y) Nanotec’

PLUG & DRIVE

2.11.7 Reading out the digital inputs
Parameters
Character | Permissible Writable Data type Default value
values
":Capt_iln' | 0and 1 Yes u8 (integer) | 0
Priority
5
Unit
None
Description

Delivers the bit mask of the inputs.
Example
:Capt_iln=1 the bit mask of the inputs is selected

:Capt_iln=0 the bit mask of the inputs is deselected

2.11.8 Reading out the voltage at the analog input
Parameters
Character Permissible Writable Data type Default value
values
":Capt_iAnalog' | O and 1 Yes u8 (integer) | 0
Priority
6
Unit

0 is equivalentto O V
1023 is equivalent to +10 V

Description
Delivers the voltage of the analog input.
Example
:Capt_iAnalog=1 the voltage of the analog input is selected

:Capt_iAnalog=0 the voltage of the analog input is deselected

\Y) Nanotec’

PLUG & DRIVE

2.11.9

Parameters

Description

2.11.10

Parameters

Description

Reading out the CAN bus load

Character Permissible Writable Data type Default value
values

":Capt_iBus' | 0Oand 1 Yes u8 (integer) | 0

Priority

7

Unit

%

Invalid values are ignored.

Delivers the approximate degree of utilisation of the CAN bus in %.
Example

:Capt_iBus=1 the utilisation of the CAN bus is selected
:Capt_iBus=0 the utilisation of the CAN bus is deselected

Reading out the controller temperature

Character Permissible Writable Data type Default value
values
":Capt_ITemp' | 0 and 1 Yes u8 (integer) | 0
Priority
8
Unit
Value range 0 — 1023
295=75°C
261=80"°C

Delivers the temperature measured in the controller.
Example
:Capt_ITemp=1 the temperature of the controller is selected

:Capt_ITemp=0 the temperature of the controller is deselected

\Y) Nanotec’

PLUG & DRIVE

2.11.11 Reading out the following error
Parameters
Character Permissible Writable Data type Default value
values
":Capt_IFollow' | 0 and 1 Yes u8 (integer) | 0
Priority
9
Unit
Steps
Description

Delivers the difference between the setpoint and actual position.

Example

:Capt_IFollow=1 the difference between the setpoint and actual position is
selected

:Capt_IFollow=0 the difference between the setpoint and actual position is

deselected

\) Nanotec’

PLUG & DRIVE

2.12

2121

Parameters

Configuration of the current controller of the
SMCP33 and PD4-N drivers

Setting the P component of the current controller at standstill

Character Permissible Writable Data type | Default value
values
":dspdrive_KP_low' | 0to 65535 Yes u16 1
(integer)

Firmware response

Description

Reading out

2.12.2

Parameters

Confirms the command through an echo.

This parameter can be used to set the P component of the current controller of the
SMCP33 and PD-4N drivers at standstill.

Normally, no change necessary.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

Setting the P component of the current controller during the run

Character Permissible Writable Datatype | Default value
values
":dspdrive_KP_hig' | 0 to 65535 Yes u16 1
(integer)

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter can be used to set the P component of the current controller of the
SMCP33 and PD-4N drivers during the run.

Normally, no change necessary.

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\Y) Nanotec’

PLUG & DRIVE

2.12.3 Setting the scaling factor for speed-dependent adjustment of the P
component of the controller during the run
Parameters
Character Permissible Writable Data type | Default value
values
":dspdrive_KP_scale' | 0 to 65535 Yes ul16 58
(integer)

Firmware response

Confirms the command through an echo.

Description
This parameter can be used to set the scaling factor for the speed-dependent
adjustment of the P component of the current controller of the SMCP33 and PD-4N
drivers during the run.
Normally, no change necessary.
Reading out
If the keyword is sent without a “= + value”, the current setting of the value can be
read out.
2.12.4 Setting the | component of the current controller at standstill
Parameters
Character Permissible Writable Datatype | Default value
values
"dspdrive_KI_low' | 0 to 65535 Yes u16 1
(integer)

Firmware response

Confirms the command through an echo.

Description
This parameter can be used to set the | component of the current controller of the
SMCP33 and PD-4N drivers at standstill.
Normally, no change necessary.

Reading out

If the keyword is sent without a “= + value”, the current setting of the value can be
read out.

\) Nanotec’

PLUG & DRIVE

2.12.5

Parameters

Setting the | component of the current controller during the run

Character Permissible Writable Datatype | Default value
values
":dspdrive_KI_hig' | 0 to 65535 Yes u1é 1
(integer)

Firmware response

Description

Reading out

2.12.6

Parameters

Confirms the command through an echo.

This parameter can be used to set the | component of the current controller of the
SMCP33 and PD-4N drivers during the run.

Normally, no change necessary.

If the keyword is sent without a “= + value”, the current setting of the value can be

read out.

Setting the scaling factor for speed-dependent adjustment of the |

component of the controller during the run

Character Permissible Writable Data type | Default value
values
":dspdrive_KI_scale' | 0 to 65535 Yes u16 200
(integer)

Firmware response

Description

Reading out

Confirms the command through an echo.

This parameter can be used to set the scaling factor for the speed-dependent
adjustment of the | component of the current controller of the SMCP33 and PD-4N

drivers during the run.

Normally, no change necessary.

If the keyword is sent without a “= + value”, the current setting of the value can be

read out.

\Y) Nanotec’

PLUG & DRIVE

3 Programming with Java (NanoJEasy)

3.1 Overview

About this chapter

This chapter contains a brief overview of the programming language of the Nanotec
stepper motor positioning controls.

The drivers contain a Java Virtual Machine (VM) that has been extended by some
manufacturer-specific functions.

Restrictions

Due to the current level of development (Beta1) and the hardware that is used, the
current VM is subject to the following restrictions:

e The program may have a maximum size of 4096 bytes after the linking.

e The stack and the heap are limited to 50 entries recursive function calls are
only possible only to a limited extent.

¢ No threads are supported.

Abbreviations used

VM Virtual Machine

Java SE Java Standard Edition
JDK Java Development Kit

JRE Java Runtime Environment

Preconditions

In order to develop a program for the controller, the following preconditions must be
fulfilled:

e NanoJEasy programming environment installed
e SMCI47-S

e SMCP33

e SMCI33

Simultaneous communication over the serial interface

NanoJ runs as a virtual machine irrespective of the actual firmware and communicates
with this firmware via the same functions that are also called up from the serial
interface.

A Java program can, therefore, run at the same time as the positioning control is
receiving and processing serial commands.

Restrictions:
¢ Sending is not possible via Java.

o The same functions should not be used from the Java program and over the serial
interface at the same time (e.g. changing step mode) since changes in the
firmware require a certain amount of time and hence may cause undefined
responses.

\) Nanotec’

PLUG & DRIVE

A list of commands for programming with Java (NanoJEasy) can be found below:

3.2 Command overview
comm.SendIntccoiiiiiii 99
comm.SendLongccccuveeeeeiiiiiiieeee e 99
drive.GetAccelarationccocoeevieciieeene 100
drive.GetCurrentccoovvviiiiiiiiees 105
drive.GetCurrentReduction...............cccee.. 106
drive.GetDemandPosition.............ccccoeveeeeen. 107
drive.GetDirection.........cccoceeeiiiiieiiniienn. 106
drive.GetDriveMode...........ccocceiiiiiiiiiniinenen. 102
drive.GetEncoderPosition.............cccocveeee 106
drive.GetMaxSpeed........ccccooviiiiiiiiiiiee. 100
drive.GetMinSpeed..........ccccceeiiiiiiiiiiniiee. 100
drive.GetModecceviiiiiiiicec e 105
drive.GetStatus.........cccvveiiiiiiee 106
drive.GetTargetPosccccceeeeeeiiiciiiieee, 101
drive.LoadDataSet.............cocoviviiiiiiniees 107
drive.SetAccelaration............cccocovevieiiineens 100
drive.SetCurrentccccooiiiiniien 105

drive.SetCurrentReductioncccuuee..... 106

drive.SetDirection............ccceeveeiiiiinnienennen, 106
drive.SetDriveModeccocoeeviiiiniecnnnnn. 101
drive.SetMaxSpeed.........ccccceeiiiviiiiiieiieeee. 99
drive.SetMinSpeed.........ccccceeiiiiiiiieeeneen. 100
drive.SetMode..........occoviiiiiiiiie 102
drive.SetTargetPos ..., 101
drive.StartDrivecccccooviiiii 99
drive.StopDrive ... 99
i0.GetAnalogInputcoeeeiiiiiiiiiiiieeee 107
i0.GetDigitallnput ... 107
i0.GetDigitalOutput..........cccoevviiiiiiiiieeeee 107
i0.SetDigitalOutput........cccoevieiiiiiiiiiieeee 107
10.SELEDeiiiiiiee e 107
util.ClearBit.........ccccovieiiiiec e 108
UtIL.GetMIlliS ..o 108
ULILSEtBit......eeeieeiiieeece e 108
ULILSIEEP e 108
UtILTeStBitoeeeiece e 108

\) Nanotec’

PLUG & DRIVE

3.3

Installing NanoJEasy

General information

Procedure

NanoJEasy is a programming environment for the development of Java programs
which can run on Nanotec stepper motor positioning controls and enable advanced
programming of the drivers.

NanoJEasy includes the freely available Gnu-Java compiler (gcj) for the translation of
Java programs.

Carry out the installation as follows:

Step

Implementation

Double-click on the setup.exe file.

Select the desired language.

Confirm that you accept the license conditions.

Select the folder in which NanoJEasy should be installed.

Confirm or change the recommended start menu entry for NanoJEasy.

O || WIN|=-

Start the installation.

\Y) Nanotec’

PLUG & DRIVE

Programming manual
Valid for firmware version 10.10.2009
Programming with Java (NanoJEasy)

3.4

3.4.1

Screenshot

Working with NanoJEasy

Main window of NanoJEasy

All important elements of the NanoJEasy main window are indicated in the following

screenshot:

a__.!c:\Dokumente und Einstellungen\ok\Desktop\Beispiele\AnalogExample.java - Na
File Edit Search View Tools Buffers

=10l

DS ER|&| & B X|o = |Qa|[comr =[11s200][<& =& > of

1 AnalogExample.java |

BT PO TIC S Ta T VOt M e]

62

63 sleep(288);

64

65 //Motor konfigurieren

66 SetTargetPos(2);

67 SetMaxSpeed(2068);

68

69 //Hauptschleife

70 - while(true){

71

72 SetLED(1);

73 sleep(188);

74

75 SetLED(2);

76 sleep(l868);

77

78 StopDrive(};

79 SetTargetPos(CalculateTargetPos ());

88 StartDrive(};

a1 1 -
4« | 3|
cHrinme fa71 =
itring: (13} _I
itring: (14}

itring: (15) Code

itring: (18) LineNumberTable

itring: (19}

itring: (22}

itring: (37}

itring: (48} SourceFile

itring: (41} tmp.java

uriting ocutput to file: C:\ te und Einstellungen‘\ck\Desktop\Beispiele\AnalegExample.prg
6i5 Bytes written
> ixit code: @

-

4 | »

i=1 co=11Ms (CR+LF) 4

Explanation of the areas

e The following communication parameters can be set with the operating elements

marked in green:
- Selection of one of the existing COM ports
- Selection of a baud rate
- Selection of a motor number
e The following actions can be carried with the buttons marked in red:
- Translation and linking of the current program
- Simulation of the current program
- Transfer of the current program into the controller
- Execution of the program in the controller
- Stoppage of the program running in the controller
o The program source text is edited in the text area marked in blue.

e Messages for the translation, simulation, transfer and execution of the developed

program appear in the output area marked in yellow.

Issue: V 2.3

95

\Y) Nanotec’

PLUG & DRIVE

3.4.2 Development process with NanoJEasy

Development process

The development process with NanoJEasy normally follows the scheme shown below:

Level

Description

1

Create the program in the text area.

Translate and link the program.

Optional: Simulate the program.

Check the settings of the communication parameters.

Transfer the program to the controller.

DB |W|IN

Execute the program on the controller.

Important instructions for programming

The following instructions should always be observed during programming:

e Source text files must be created with the UTF-8 character encoding. NanoJEasy
uses this character encoding as the default.

e The class name in the source text file must agree with the name of the source text
file. Example: The “Testprogramm.java” file must contain the class “Test program

class”.

e The Java commands for communication with the controller only initiate the
respective action of the controller, but do not wait until the controller has carried out
the action. If the Java program should wait until the action is carried out, a waiting
time must be inserted after the command for execution, e.g. “Sleep(2000);". For
more details, see also the example programs.

Completing the command on entry

Enter a command as follows:

Step

Implementation

1

Enter the first letters of a command, e.g. “Set” of “SetCurrent”.

2

Press the <Ctrl> + <space> keys. A selection list of commands that begin
with “Set” appears.

Mark a command in the selection list using the “Up” and “Down” arrow
keys.

4

Press the “Enter” key to select the command.

Starting and ending the simulation

Proceed as follows to start and end the simulation:

Step

Implementation

1

Click on the “Start simulation” button (see above). The outputs of the
emulator appear consecutively in the output area.

Press the <Ctrl> + <Pause> keys to end the simulation.

\Y) Nanotec’

PLUG & DRIVE

3.4.3 Integrated commands

Classes and functions

The VM contains integrated functions that can be used in the program. The functions
are grouped into a total of four different classes which can be integrated in the source
code.

The following sections provide information on the individual classes and the functions
they include.

Integrating a class

The four different classes are included in the nanotec package and must be imported
by the following entry at the start of the program:

import nanotec.*;

In addition, the classes which are really included on transfer to the controller must be
selected in NanoJEasy.

“Manage Includes” button in the upper right area of the application

W =S 0O

Manage Includes

The “Manage Includes” opens.

The required classes can then be included simply by activating the checkbox:

Manage Includes x|

Include comm,class: I

v
Include io.class: v
Include wkil.class: v

| Ik I Cancel

Calling up functions
The individual functions of a class are called up in the source text as follows:
[Name of the class].[Name of the function]();
Example:
drive.StartDrive();

Programming manual .,) Nanﬂtec®

Valid for firmware version 10.10.2009 UGS RaIvE
Programming with Java (NanoJEasy)

Integrating an individual function

To save memory space, the functions included in the classes can also be used
individually.

To do so, every function that is to be used must be included as a declaration in the
source code:

class example{
//declaration of the function
static native void StartDrive();

//main function
//is called up at the start of the program
public static void main() {

//use of the function
StartDrive();

98 Issue: V 2.3

\Y) Nanotec’

PLUG & DRIVE

3.5 Classes and functions

351 “comm” class

comm.SendInt

Declaration:
static native void SendInt(intin);

Sends the specified integer value over the serial interface.

comm.SendLong

Declaration:
static native void SendLong(long in);

Sends the specified long value over the serial interface.

“drive” class

drive.StartDrive

Declaration:
static native void StartDrive();

This function starts the motor. The currently selected data record (mode, speed, ramp,
etc.) is used here.

The function corresponds to the serial command 'A’, see command 2.6.1 Starting the
motor.

drive.StopDrive

Declaration:
static native void StopDrive(int type);
Cancels the current travel; type determines how it will be stopped:
type = 0: A quickstop is carried out (braking with very steep ramp)
type = 1: Braking is carried out with the normal braking ramp

In the speed, analog and joystick modes, this is the only method of returning the motor
to the ready state.

The motor is brought to an immediate halt without ramps. This may result in step loss
at high speeds.

In the three modes named above the speed should, therefore, be reduced prior to the
stop command.

The function corresponds to the serial command 'S', see command 2.6.2 Stopping a
motor.

drive.SetMaxSpeed

Declaration:
static native void SetMaxSpeed(int value);
Specifies the maximum speed in Hertz (steps per second).
The maximum speed is reached after first passing through the acceleration ramp.

The function corresponds to the serial command 'o<value>', see command 2.6.10
Setting the maximum frequency.

\Y) Nanotec’

PLUG & DRIVE

drive.GetMaxSpeed
Declaration:
static native int GetMaxSpeed();

Reads out the currently valid value of the maximum speed in Hertz (steps per
second).

The function corresponds to the serial command 'Zo', see 2.3 Read command.

drive.SetMinSpeed
Declaration:
static native void SetMinSpeed (int value);

Specifies the minimum speed in Hertz (steps per second) and can only be used in
open loop mode.

At the start of a record the motor begins to turn with the minimum speed. It then
accelerates up to the maximum speed with the set ramp.

The function corresponds to the serial command 'u<value>', see command 2.6.9
Setting the minimum frequency.
drive.GetMinSpeed
Declaration:
static native int GetMinSpeed();
Reads out the currently valid value of the minimum speed in Hertz (steps per second).

The function corresponds to the serial command 'Zu', see 2.3 Read command.

drive.SetAccelaration
Declaration:
static native void SetAccelaration(int value);
Specifies the acceleration ramp (and at this time also the brake ramp).
To convert the parameter to acceleration in Hz/ms, the following formula is used:
Acceleration in Hz/ms = ((3000.0 / sqrt((float)<value>)) - 11.7).
The function corresponds to the serial command 'b<value>', see command 2.6.12
Setting the acceleration ramp.
drive.GetAccelaration
Declaration:
static native int GetAccelaration();
Reads out the currently valid value of the acceleration ramp.

The function corresponds to the serial command 'Zb', see 2.3 Read command.

\Y) Nanotec’

PLUG & DRIVE

drive.SetTargetPos
Declaration:
static native void SetTargetPos(int value);

Specifies the travel distance in (micro)steps. Only positive values are allowed for the
relative positioning. The direction is set with SetDirection.

For absolute positioning, this command specifies the target position. Negative values
are allowed in this case. The direction of rotation set with SetDirection is ignored as
this results from the current position and the target position.

The value range is from -100,000,000 to +100,000,000.
In the adaptive mode, this parameter refers to half steps.
The function corresponds to the serial command 's<value>', see command 2.6.8
Setting the travel distance.
drive.GetTargetPos
Declaration:
static native int GetTargetPos();
Reads out the currently valid value of the travel distance in (micro)steps.

The function corresponds to the serial command 'Zs', see 2.3 Read command.

drive.SetDriveMode
Declaration:
static native void SetDriveMode(int value);

The function corresponds to the serial command ''<value>', see command 2.5.5
Setting the motor mode.

Sets the motor mode. The following modes are available:
For old scheme:

: Position mode

: Speed mode

: Flag positioning mode

: Clock direction mode

: Analog mode

: Joystick mode

: Analog positioning mode

0 N O b~ W N =

: HW reference mode

9: Torque mode

101: CL quick test mode

101: CL test mode

For more information, see command 2.6.6 Setting positioning mode (old scheme) 'p'.
For new scheme:

10: Motor mode

For more information, see command 2.6.7 Setting the positioning mode (new scheme)

p.

\) Nanotec’

PLUG & DRIVE

drive.GetDriveMode
Declaration:
static native int GetDriveMode();
Reads out the current motor mode.

The function corresponds to the serial command 'Z!', see 2.3 Read command.

drive.SetMode
Declaration:
static native void SetMode(int value);

The function corresponds to the serial command 'p<value>', see command 2.5.5
Setting the motor mode.

The value combinations of the old scheme for motor mode "' and positioning mode 'p'
are:

Positioning mode (!=1)

p=1 Relative positioning;

The command 2.6.8 Setting the travel distance 's' specifies the travel
distance relative to the current position.

The command 2.6.15 Setting the direction of rotation 'd' specifies the
direction.

The parameter 2.6.8 Setting the travel distance 's' must be positive.

p=2 Absolute positioning;

Command 2.6.8 Setting the travel distance 's' defines the target
position relative to the reference position.

Command 2.6.15 Setting the direction of rotation 'd" is ignored.

p=3 Internal reference run;

The motor runs with the lower speed in the direction set in command
2.6.15 Setting the direction of rotation 'd' until it reaches the index line
of the encoder. Then the motor runs a fixed number of steps to leave
the index line again. For the direction of free travel, see command
2.5.6 Setting the limit switch behavior 'I'. This mode is only useful for
motors with integrated and connected encoders.

p=4 External reference run;

The motor runs at the highest speed in the direction set in command
2.6.15 Setting the direction of rotation 'd' until it reaches the limit
switch. Then a free run is performed, depending on the setting.

See command 2.5.6 Setting the limit switch behavior 'I'.

Speed mode (1=2)

p=1 Speed mode;

When the motor is started, the motor increases in speed to the
maximum speed with the set ramp. Changes in the speed or direction
of rotation are performed immediately with the set ramp without
having to stop the motor first.

p=2 Not assigned

p=3 Internal reference run;
see Positioning mode

p=4 External reference run;
see Positioning mode

\Y) Nanotec’

PLUG & DRIVE

Flag positioning mode (!1=3)

p=1 Flag positioning mode;
After starting, the motor runs up to the maximum speed. After arrival
of the trigger event (command 2.7.9 Actuating the trigger ‘T or trigger
input) the motor continues to travel the selected travel distance
(command 2.6.8 Setting the travel distance 's') and changes its speed
to the maximum speed 2 (command 2.6.11 Setting the maximum
frequency 2 'n') for this purpose.

p=2 Not assigned

p=3 Internal reference run;
see Positioning mode

p=4 External reference run;
see Positioning mode

Clock direction mode (1=4)

p=1 Manual left.

p=2 Manual right.

p=3 Internal reference run;
see Positioning mode

p=4 External reference run;

see Positioning mode

Analog mode (1=5)

| Not applicable

Joystick mode (!1=6)

| Not applicable

Analog positioning mode (1=7)

p=1

Analog positioning mode

p=2

Not assigned

p=3

Internal reference run;
see Positioning mode

p=4

External reference run;
see Positioning mode

HW reference mode (!=8)

| Not applicable

Torque mode (1=9)

| Not applicable

CL quick test mode (!1=101)

p=1

| CL quick test mode

CL test mode (1=101)

p=2

| CL test mode

\) Nanotec’

PLUG & DRIVE

The value combinations of the new scheme for motor mode "' and positioning mode 'p'
are:

Positioning mode (!1=10)

p=1 Relative positioning;

The command 2.6.8 Setting the travel distance 's' specifies the travel
distance relative to the current position.

The command 2.6.15 Setting the direction of rotation 'd' specifies the
direction.

The parameter 2.6.8 Setting the travel distance 's' must be positive.

p=2 Absolute positioning;

Command 2.6.8 Setting the travel distance 's' defines the target
position relative to the reference position.

Command 2.6.15 Setting the direction of rotation 'd" is ignored.

p=3 Internal reference run;

The motor runs with the lower speed in the direction set in command
2.6.15 Setting the direction of rotation 'd' until it reaches the index line
of the encoder. Then the motor runs a fixed number of steps to leave
the index line again. For the direction of free travel, see command
2.5.6 Setting the limit switch behavior 'I'. This mode is only useful for
motors with integrated and connected encoders.

p=4 External reference run;

The motor runs at the highest speed in the direction set in command
2.6.15 Setting the direction of rotation 'd' until it reaches the limit
switch. Then a free run is performed, depending on the setting.

See command 2.5.6 Setting the limit switch behavior 'I'.

Speed mode (1=10)

p=5 Speed mode;

When the motor is started, the motor increases in speed to the
maximum speed with the set ramp. Changes in the speed or direction
of rotation are performed immediately with the set ramp without
having to stop the motor first.

p=3 Internal reference run;
see Positioning mode

p=4 External reference run;
see Positioning mode

Flag positioning mode (!1=10)

p=6 Flag positioning mode;

After starting, the motor runs up to the maximum speed. After arrival
of the trigger event (command 2.7.9 Actuating the trigger "T' or trigger
input) the motor continues to travel the selected travel distance
(command 2.6.8 Setting the travel distance 's') and changes its speed
to the maximum speed 2 (command 2.6.11 Setting the maximum
frequency 2 'n') for this purpose.

p=3 Internal reference run;
see Positioning mode

p=4 External reference run;
see Positioning mode

Clock direction mode (1=10)

p=7 Manual left.
p=8 Manual right.
p=9 Internal reference run;

see Positioning mode

\Y) Nanotec’

PLUG & DRIVE

p=10 External reference run;
see Positioning mode

Analog mode (1=10)

p=11 | Analog mode

Joystick mode (1=10)

p=12 | Joystick mode

Analog positioning mode (!=10)
p=13 Analog positioning mode
p=3 Internal reference run;

see Positioning mode

p=4 External reference run;
see Positioning mode

HW reference mode (1=10)

p=14 | HW reference mode

Torque mode (!=10)

p=15 | Torque mode
CL quick test mode (!=10)
p=16 | CL quick test mode
CL test mode (!=10)
p=17 | CLtest mode
drive.GetMode
Declaration:

static native int GetMode();
Reads out the current positioning mode.

The function corresponds to the serial command 'Zp', see 2.3 Read command.

drive.SetCurrent
Declaration:
static native void SetCurrent(int value);
Sets the phase current in percent. Values above 100 should be avoided.
The function corresponds to the serial command 'i<value>', see command 2.5.1
Setting the phase current.
drive.GetCurrent
Declaration:
static native int GetCurrent();
Reads out the currently selected phase current in percent.

The function corresponds to the serial command 'Zi', see 2.3 Read command.

\Y) Nanotec’

PLUG & DRIVE

drive.SetCurrentReduction
Declaration:
static native void SetCurrentReduction(int value);

Sets the current of the current reduction at stanstill in percent. Like the phase current,
this current is relative to the end value. Values above 100 should be avoided.

The function corresponds to the serial command 'r<value>', see command 2.5.2
Setting the phase current at a standstill.
drive.GetCurrentReduction
Declaration:
static native int GetCurrentReduction();
Reads out the currently selected phase current at standstill in percent.

The function corresponds to the serial command 'Zr', see 2.3 Read command.

drive.GetStatus
Declaration:
static native int GetStatus();
Returns the current status of the controller as a bit mask.
Bit0 ready
Bit1 reference
Bit2 posError
Bit3 endStartActive
Bit 4-7 mode

drive.SetDirection
Declaration:
static native void SetDirection(int value);
Sets the direction of rotation:
value=0 Direction of rotation, left
value=1 Direction of rotation, right
The function corresponds to the serial command 'd<value>', see command 2.6.15
Setting the direction of rotation.
drive.GetDirection
Declaration:
static native int GetDirection();
Reads out the currently set direction of rotation.

The function corresponds to the serial command 'Zd', see 2.3 Read command.

drive.GetEncoderPosition
Declaration:
static native int GetEncoderPosition();
Reads out the current position of the encoder.

The function corresponds to the serial command 'l', see command 2.5.16 Reading out
the encoder position.

\Y) Nanotec’

PLUG & DRIVE

drive.GetDemandPosition
Declaration:
static native int GetDemandPosition();
Reads out the current position of the motor.
The function corresponds to the serial command 'C', see command 2.5.17 Reading
out the position.
drive.LoadDataSet
Declaration:
public static native void LoadDataSet (int whichone);
Parameter: int whichone 1-32
Return: None

Loads the selected data record into the controller. The data records can be configured
by means of NanoPro.

3.5.3 “i0” class

i0.SetLED
Declaration:
static native void SetLED(intin);
Sets the error LED.
1: LED on
2: LED off

io.SetDigitalOutput
Declaration:
static native void SetDigitalOutput(int value);

Sets the digital outputs of the controller as bit-coded.

io.GetDigitalOutput
Declaration:
static native int GetDigitalOutput();

Reads out the currently set bit mask for the digital outputs.

io.GetDigitalInput
Declaration:
static native int GetDigitallnput();

Reads out the currently connected digital inputs.

io.GetAnaloglnput
Declaration:
static native int GetAnaloglnput(int Port);

Reads out the current values of the analog inputs. Port specifies the port to be read: 1
for the first analog port, 2 for the second port (if present).

\) Nanotec’

PLUG & DRIVE

354

util.GetMillis

util.Sleep

util. TestBit

util.SetBit

util.ClearBit

“util” class

Declaration:

Reads out the time since the controller was switched on in milliseconds.

Declaration:

Waits for ms mil

Declaration:

static native int GetMillis();

static void Sleep(int ms);

liseconds.

static boolean TestBit(int value, int whichone);

Checks that a bit is set.

value
whichone

Return =

Declaration:

Sets a bitinani

Value
whichone

Return =

Declaration:

value that the bit to be checked contains
specifies which bit should be tested

0 corresponds to the lowest bit

true if the bit is set, otherwise false

static int SetBit(int value, int whichone);
nteger.

= value to which the bit should be set
= specifies which bit should be set

0 corresponds to the lowest bit
the changed value

static int ClearBit(int value, int whichone);

Deletes a bit in an integer.

Value
whichone

Return =

value in which the bit should be deleted
specifies which bit should be deleted

0 corresponds to the lowest bit

the changed value

\Y) Nanotec’

PLUG & DRIVE

3.6 Java programming examples

Some brief example programs follow. The programs are available as source code and
in already compiled form in the “Examples” directory.

3.6.1 AnalogExample.java
/** Reads the analog value every 2 seconds and travels to a
* position calculated from it

*

**/

import nanotec.io;
import nanotec.drive;

import nanotec.util;

class AnalogExample {

/** Reads the analog value and calculates
* a target position from it
L3 */
static int CalculateTargetPos(){
int pos = i0.GetAnaloglnput(1);

pos = (pos * 2) + 1000;

return pos;

}

public static void main() {

//Configure motor
drive.SetTargetPos(0);
drive.SetMaxSpeed(2000);

//Main loop
while(true){

i0.SetLED(1);
util.Sleep(100);

i0.SetLED(0);
util.Sleep(1800);

drive.StopDrive();
drive.SetTargetPos(CalculateTargetPos ());
drive.StartDrive();

\Y) Nanotec’

PLUG & DRIVE

3.6.2

3.6.3

DigitalExample.java
/** If input 1 is active, the LED is switched on
* */

import nanotec.io;

import nanotec.util;

class DigitalExample {
public static void main() {
util.Sleep(200);

//Main loop
while(true){

if(io.GetDigitallnput() == 65){
i0.SetLED(1);

} else {
i0.SetLED(0);

}

TimerExample.java

/** Example for a timer realized with GetMillis()
* The program lets the red LED flash

* */

import nanotec.io;

import nanotec.util;

class TimerExample {

public static void main() {

//Main loop

while(true){
i0.SetLED(1);
util.Sleep(200);

i0.SetLED(0);
util.Sleep(1800);

}

\Y) Nanotec’

PLUG & DRIVE

3.6.4 ConfigDriveExample.java

/** Configures the motor for absolute positioning

*

*

**/

and travels back and forth between 2 positions

with different speeds

import nanotec.drive;

import nanotec.util;

class ConfigDriveExample {

public static void main() {

//Configure motor
drive.SetDriveMode(1);
drive.SetMode(2);
drive.SetMinSpeed(100);
drive.SetAccelaration(2000); //Ramp
drive.SetCurrent(10); //Current
drive.SetCurrentReduction(l); //Current for reduction

//Positioning mode
//Absolute positioning

//Main loop

while(true){
drive.SetMaxSpeed(1000); //Speed
drive.SetTargetPos(1000); //Target

drive.StartDrive();
util.Sleep(4000); //Wait 4 seconds
drive.SetMaxSpeed(2000);
drive.SetTargetPos(10);
drive.StartDrive();
util.Sleep(2000);

//Speed
//Target

//Wait 2 seconds

\Y) Nanotec’

PLUG & DRIVE

3.6.5 DigitalOutput.java
/**Sets the outputs and sends the current status
* via the serial interface

*

**/

import nanotec.io;
import nanotec.comm;

import nanotec.util;

class DigitalOutput {
public static void main() {

while(true){
i0.SetDigitalOutput(0);
comm.SendInt(GetDigitalOutput());
util.Sleep(1000);

io.SetDigitalOutput(1);
comm.SendInt(GetDigitalOutput());
util.Sleep(1000);

io.SetDigitalOutput(2);
comm.SendInt(GetDigitalOutput());
util.sleep(1000);

Y Nan

otec’

UG & DRIVE

3.7

3.7.1

Introduction

Java SE

ejvm_linker

PD4 Utility

ejvm_emulator

Manual translation and transfer of a program
without NanoJEasy

Necessary tools

Alternatively to the translation and transfer of programs from the programming
environment, programs can also be translated and transferred manually.

Java SE is the standard Java implementation from Sun. Two different versions are
offered by Sun: The JRE (Java Runtime Environment) which can be used to execute a
finished Java program and the JDK (Java Development Kit) that is required for the
development of Java programs.

Both can be downloaded free of charge from Sun (java.sun.com). The JDK, which
also contains the JRE, is necessary for developing a program for the controller. The
current version is “JDK 6 Update 14”.

The ejvm_linker is a command line program which converts Java.class files in such a
way that they can be processed by the controller.

It is not essential to install the program. It is helpful, however, if you enter it in the
PATH variable. This means it is not necessary to enter the complete path when
starting the program.

Proceed as follows for entering the program in the PATH variable:

Step Implementation

1 Under Start -> Settings -> System driver -> System, select the
“Advanced” tab.

Click on the <Environment variables> button.

Mark the variable in the “System variables” window.

Click on <Edit> under the “System variables” window.

Enter the installation path of the program under “Value of the variables”.

Al |OW|W|N

Click on <OK>.

The PD4 utility (Version 1.2 or higher required) is used for transferring firmware or
program files to a controller. The program does not have to be installed, it is sufficient
to execute the pd4_util.exe.

The ejvm_emulator is used for the function test of the program on the PC. The
emulator can simulate problems such as a stack overflow on the VM.

\) Nanotec’

PLUG & DRIVE

3.7.2 Translating the program

The program must be translated with the normal Java SE compiler:
javac.exe Myprogram.java

The result is a .class file which contains the finished program in binary form:
Myprogram.class

“Myprogram” is the placeholder for the name of your program.

3.7.3 Linking and converting a program

Overview

Before the program can be transferred to the controller, it must be linked and
converted. This is carried out with the aid of the ejvm_linker.exe. Some checks are
also carried out during the conversion, especially of the program size.

Starting ejvm_linker.exe without debug function

Enter:

ejvm_linker.exe Myprogram.class Myprogram.prg

“Myprogram” is the placeholder for the name of your program.

Starting ejvm_linker.exe with debug function

The program can be converted with the -debug' switch for debug purposes. The
created program then contains other additional debug information and the linker
outputs detailed information. This makes the created program larger, however.

Enter:

ejvm_linker.exe -debug Myprogram.class Myprogram.prg

“Myprogram” is the placeholder for the name of your program.

Result

The result of the linking and conversion is a .prg file which can be loaded into the
controller:

Myprogram.prg

\Y) Nanotec’

PLUG & DRIVE

3.7.4 Transferring the program to the controller

PD4 utility dialog window
The transfer to the controller is carried out with the PD4 utility:

=lo x|
File Configuration Edit Help
=]
=
=l
=
I~ Enable Log Tiranster Program
frite Firmiare
Stz e | Enable Paling ——
Motor Humber [1 =] Test | epiarag SutoFlash
Procedure
Proceed as follows for entering the program in the PATH variable:
Step Implementation

1 Open the “Configuration” menu item and enter the correct COM port and
a baud rate of 115,200.

2 Check that the number that appears in the “Motor Number” input field
agrees with the position of the hex switch of the controller (for more
details, see the manual of the controller).

3 Open the File -> Open menu item and select the .prg file of your program.
The upper text field is filled out by the PD4 utility.

3 To transfer the program to the controller, click on the <Transfer Program>
button.

3.75 Executing the program
PD4 utility

Serial commands can also be transferred to the controller with the PD4 utility. To do
this, enter the desired command in the text field with the <Send Command> button.

The commands listed in the following sections are available:

(JI ... Verifying loaded Java program

This command loads the current program from the EEProm and initializes the VM.
This initialization is also carried out automatically when switching on the controller and
when transferring the program with the PD4 utility.

The ID of the “ECAFFEOQ1” program is received as the response to the command. See
also Section 2.8.4 Verifying loaded Java program.

\Y) Nanotec’

PLUG & DRIVE

(JA ... Starting a loaded Java program

This command starts the program. (JA+ is received as the response if the program
was started successfully or (JA- if the program could not be started (no valid or no
program at all installed on the controller). See also Section 2.8.2 Starting a loaded
Java program.

(JS ... Stopping the running Java program
This command stops the program.

(JS+ is received as the response if the program was stopped successfully or (JS- if
the program was already ended. See also Section 2.8.3 Stopping the running Java
program.

(JB ... Automatically starting the Java program when switching on the controller

This command can be used to determine whether the program is started automatically
when the controller is switched on:

o (JB=1 the program is started automatically.
e (JB=0 the program is not started automatically.

See also Section 2.8.5 Automatically starting the Java program when switching on the
controller.

(JE ... Reading out error of the Java program
This command reads out the last error:
¢ ERROR_NOT_NATIVE
¢ ERROR_FUNCTION_PARAMETER_TYPE
¢ ERROR_FUNCTION_NOT_FOUND
¢ ERROR_NOT_LONG
¢ ERROR_UNKNOWN_OPCODE
¢ ERROR_TOO_MANY_PARAMS
¢ ERROR_NO_MAIN_METHOD
¢ ERROR_CP_OUT_OF_RANGE
¢ ERROR_LOCAL_VAR _OUT_OF_RANGE
¢ ERROR_NOT_AN_VAR_IDX
¢ ERROR_VAR_IS NO_INT
¢ ERROR_STACK_OVERFLOW
¢ ERROR_STACK UNDERFLOW
¢ ERROR_HEAP_OVERFLOW
¢ ERROR_HEAP_UNDERFLOW
¢ ERROR_FRAME_OVERLOW 10
¢ ERROR_UNKNOWN_DATATYPE 11
¢ ERROR_LOCAL VAR _OVERFLOW 12

See also Section 2.8.6 Reading out error of the Java program and 3.8 Possible Java
error messages.

m O QO @ > © 0 N o o h w N =

n

\) Nanotec’

PLUG & DRIVE

(JW ... Reading out warning

This command reads out the last warning:
WARNING_FUNCTION_NOT_SUPPORTED

To display the outputs of the program, the checkmark must be set against “Debug
Log” (see “DigitalOutput.java” program example). See also Section 2.8.7 Reading out
the warning of the Java program.

3.8 Possible Java error messages

Meaning of the error messages

The error messages read out with the “(JE” command have the following meaning:

Index

Error message

Meaning

1

ERROR_NOT_NATIVE

This command is not
supported by the controller.

ERROR_FUNCTION_PARAMETER_TYPE

The transfer parameter of a
function has the wrong type
(e.g. “float” instead of “int”).

ERROR_FUNCTION_NOT_FOUND

An unknown function has
been called up.

Check that all files have been
included.

See also Section 3.4.3
Integrated commands
(Include Manager).

ERROR_NOT_LONG

An incorrect data type is
being used (should be
“IOng”)_

ERROR_UNKNOWN_OPCODE

A Java function that is not
supported is being called up
(e.g. “new”).

ERROR_TOO_MANY_PARAMS

The number of parameters in
the call-up of a function is not
correct.

ERROR_NO_MAIN_METHOD

The “public static void main()”
function is missing.

ERROR_CP_OUT_OF_RANGE

Memory error: Check that all
files have been included. See
also Section 3.4.3 Integrated
commands (Include
Manager).

ERROR_LOCAL_VAR_OUT_OF RANGE

Memory error: Check that all
files have been included. See
also Section 3.4.3 Integrated
commands (Include
Manager).

ERROR_NOT_AN_VAR_IDX

Memory error: Check that all
files have been included. See
also Section 3.4.3 Integrated
commands (Include
Manager).

\Y) Nanotec’

PLUG & DRIVE

Index

Error message

Meaning

ERROR_VAR_IS_NO_INT

An incorrect data type is
being used (should be “int”).

ERROR_STACK_OVERFLOW

Stack overflow: Too many
function calls have been
nested within one another
(possibly recursion too deep).

ERROR_STACK_UNDERFLOW

Stack underflow: Check that
all files are included. See
also Section 3.4.3 Integrated
commands (Include
Manager).

ERROR_HEAP_OVERFLOW

Heap overflow: Too many
function calls have been
nested within one another
(possibly recursion too deep).

ERROR_HEAP_UNDERFLOW

Heap underflow: Check that
all files have been included.
See also Section 3.4.3
Integrated commands
(Include Manager).

10

ERROR_FRAME_OVERLOW

Frame overflow: Too many
class call-ups have been
used.

11

ERROR_UNKNOWN_DATATYPE

An unknown data type is
used.

12

ERROR_LOCAL_VAR_OVERFLOW

Memory error: Check that all
files have been included. See
also Section 3.4.3 Integrated
commands (Include
Manager).

See also Section 2.8.6 Reading out error of the Java program and Section 3.7.5
Executing the program.

\Y) Nanotec’

PLUG & DRIVE

4 Programming via the COM interface

4.1 Overview

About this chapter

This chapter contains an overview of the COM interface for programming the Nanotec
stepper motor positioning controls.

Operating systems and NanoPro versions

The functions required for serial communication with the stepper motor positioning
controls are currently only written for the Windows operating system and its derivates
(x64).

This documentation is valid from NanoPro version 0.51.0.41 and SDK
version 0.51.0.41.

Preconditions

To develop a program for controlling the stepper motor positioning controls, the
following preconditions must be fulfilled:

e Programming knowledge is required.

e The SDK (Software Development Kit) for “NanoPro” should be installed. The
PDA4l1.dll command is registered on its installation.

e The .net framework 2.0 must be installed.

In order to try out “Office examples” with Excel, the VBA add-on for Excel must be
installed. For the smooth interaction of the individual components, MS-Office 2003 and
higher should be used.

Programming environments

VBA (Visual Basic) or any other high language IDE such as Visual Studio, for
example, can be used as the programming environment. A Visual Studio project file is
included with the examples.

\Y) Nanotec’

PLUG & DRIVE

A list of the commands for programming via the COM interface can be found below:

4.2 Command overview
Baudrate ..o 124
ChooseNewRecordccccceevieiiiiecinneens 143
DecreaseFrequencycccccvvveeeeeeeeececnnns 127
DecreaseNewFrequency.........cccccceeeeeiinnnns 143
Errorflag.......oocveeeiiieii 123
ErrorMessageString.........cccovceeeiiieeenennen. 123
ErrorNumber ..., 123
GetAvailableMotorAddresses............c......... 124
GetBrakeTA ... 158
GetBrakeTB........coooiiieiiiie e 159
GetBrakeTC.....coooeiiieeiieeee e 159
GetEncoderRotary.........cccocveiiiiiiiiiiiineene 158
GetlnputMask ..., 157
GetlnputMaskEdge.........cceveeiviiciiiiieeeneeen, 157
GEtlO .. 157
GetNewAnalogueMaX.............ccccecvvveeeeeeennnn. 150
GetNewAnalogueMin..........cccoiieeiiiieeens 150
GetNewAngelDeviationMax.............cccceeenee 151
GetNewBreakcccceeviiieiiiiiieec e 156
GetNewCurrentReductionccccceeenee 148
GetNewDirectioncccocveeeiiiiieeiiiiieeeee 155
GetNewDirectionReverse..........c..cccceevueeenee 155
GetNewEncoderDirection...........cccccceeeeenee 155
GetNeWEITOr........cooiiii e, 146
GetNewErrorAddresscccocveviiieciieeene 146
GetNewLimitSwitchTypecccovvveeeeeeennn. 149
GetNewMaxFrequency...........cccccvvveeeeneennn. 153
GetNewMaxFrequency2...........ccccevveeeennnne 153
GetNewMotorAddresscccoocveeeeiiieeeennne 145
GetNewMotorStepAngel........ocoeeeeviieeennns 150
GetNewNextRecord...........cccooviieiiiiieeeennne 147
GetNewOperationMode...........ccccccceeeeeeennn. 147
GetNewPhaseCurrentcccoeeiiiieeenns 148
GetNewPlay........ccco o 144
GetNewPosition ... 142
GetNewPositionType......ccccvevvvveeee i 151
GetNewRamp ..o 154
GetNewRepeat.........cccoceeveeeiiiiciiiiieeee e, 156

GetNewReverseClearance.............cccccue... 149
GetNewRotationMode............cccoverinienneen. 154
GetNewSendStatusWhenCompleted 142
GetNewSoftwarerFilter............ccccooeviieennenn. 144
GetNewStartFrequencyoccceeeiiineeen. 152
GetNewStatus.......cooveeeiiiie 139
GetNewStepMode.........coocieiiiiiiiiiniieen. 145
GetNewSteps ... 152
GetNewSwingOutTimec.coeevvieviiiiineen. 146
GetNewVersion.........ccevvvieeee e, 141
GetOperationModecccceeeeeiiiiiriieeeneennnn. 135
GetRampTYPe.....covevviiieee e 158
GetRotencCINC.......oovieiiii 160
GetStatusByte.......coovvevvviieieeceeeeeee 125
HasEndedTravelProfileAndStartinputStillActive
.. 125
HasNewEndedTravelProfileAndStartinputStillA
CIVE . 139
HasNewPositionError...........cccccoevviieeeinnen. 139
HasPoOSItIONEIOr.........ooccvviiiiiiiiiecc e, 125
IncreaseFrequencyccccovceeiiiiiecc e, 127
IncreaseNewFrequency..........cccccceeeeninins 143
IsAnalogModeActivecccoeeeeiiiiiiinne 126
IsAtNewReferencePosition 139
IsAtReferencePosition()..........ccccvveeeeeiinnns 125
IsClockDirectionModeActive..............cc.c...... 125
IsFlagPositionModeActiveccc.ccoeennnnnn 125
IsJoyStickModeActivecccceeeveeeennen. 126
IsMotorReady()covevviieeeiiiiiieeiiee e 125
IsNewAnalogModeActive..............coceeennen. 140
IsNewClockDirectionModeActive................ 140
IsNewFlagPositionModeActive 139
IsNewMotorReadycccoovvieeiiiiiencininen. 139
IsNewNewdJoyStickModeActive 140
IsNewPositionModeActivecccceceueee. 139
IsNewSpeedModeActive..........cccceeeeeennnnn. 139
IsNewTorqueModeActive..........cccceeeeeinnnns 140
IsPositionModeActive..........ccccceeviiiinieenne. 125

IsSpeedModeActive..........cccuvvvieeeeeeeeeec, 125

\Y) Nanotec’

PLUG & DRIVE

IsTorqueModeActive...........cccvuveeinnnnnnnnnn. 126
MOtOrAddresseccoovvveeeiiiiiee e 124
NewSuppressResponse.........cccccceeeeeeeinnnnns 153
NewTriggerOncoceeeveeeeiiiciieeee e 143
ReadAddress.......ccccceviiievieeiniieieee e 133
ReadBreak........cccocooeviiiiiiiiiec e, 134
ReadChangeDirectionccccovceeeinnnen. 132
ReadCounterccccoeiviiiiiiiiieecc e, 133
ReadCurrentReduction.............cccoocveeeinnnen. 135
ReadDirection...........cccoocveeeiiiiiii i, 138
ReadMaximumFrequencycccceeevnnnee. 134
ReadMemory ... 134
ReadNextOperation.............cccoveeeeeiieiiinnn, 134
ReadNormalFrequencyccccceeeeeniinns 134
ReadNumberOfPasses...........ccccoceveniiennnen. 133
ReadOperationTypeccoecvvvveeeeeeeeeiiinns 137
ReadPhaseCurrent............cccovviiiiiinnecnann. 135
ReadRampccooiiiiiiii e 133
ReadRecordcocoeeiiiiiiiieee e, 132
ReadReverseClearance...............cccoceeennen. 138
ReadStartFrequencycccocoeeiiiiiiiinnnen. 133
ReadSteps......ooo i 134
ResetCounterccoveiiiieiiiiiiie e 130
ResetNewPositionccccovcieviiiiieicienen, 142
ResetNewPositionErrorcccccoecviveeenee 141
ResetPositionError ..., 127
SelectedPortcooviiiii 124
SerialPortscoovveeiieiic e 123
SetAdAress ..o 130
SetBrakeTBcceeviiiiiii 159
SetBrakeTC ... 159
SetBraleTA ... 158
SetlnputMask........ccccooiiiii 157
SetlnputMaskEdge ..o, 157
SOt 156
SetNewAnalogueMaX.........cccccevvvvveeeninnennnn. 150
SetNewAnalogueMin.........cccccoviieveincinnnnnn. 150
SetNewAngelDeviationMax............cccuveeee... 151
SetNewBreakK.........ccocovvveeiiiiiinicee e 156
SetNewCurrentReduction............ccccceevnenne 148

SetNewDirection..........coeevviveiieiieiieeeeee, 154

SetNewDirectionReverse...........c.ccccueeenen. 155
SetNewEnableAutoCorrect............ccceeeueee. 146
SetNewEncoderDirection...........c.ccocoveevnee. 155
SetNewLimitSwitchTypecccccvvveeeeeennn. 148
SetNewMaxFrequencycccccccvvvveeeeeennn. 152
SetNewMaxFrequency?2ccccceevveveennn. 153
SetNewMotorAddress.........cccoevvvveeeeniieeenn. 145
SetNewMotorStepAngelcccocceveiiiinenen. 149
SetNewNextRecordccccovviieiiiiiienenne 147
SetNewOperationModeccccccceeeeeenn. 147
SetNewPhaseCurrent...........cccoccieviininenn. 148
SetNewPlay ..o 144
SetNewPositionType........cccccvveviiiieeeiiineen. 151
SetNewRamp.........cccccvviieeiiiiiiceeee e, 153
SetNewRecord..........coccoveveviiiiiiiieiiec e 143
SetNewRepeat..........cccovvveveiiiiiiiciiieeee, 156
SetNewReverseClearancecccco...... 149
SetNewRotationMode..............cccveveiininenn. 154
SetNewSendStatusWhenCompleted.......... 141
SetNewSoftwareccccoviieiiiiiiiieen 141
SetNewSoftwareFilter...........cccoooeviiiiienn. 144
SetNewStartFrequency.........cccooceeveninneeen. 152
SetNewStepMode.........cccceeeeeiiiiiiiiiieeneeen. 144
SetNewStepScocooeiiiiiiiiiieeeeeeeee e, 152
SetNewSwingOutTime........ccccoecvveveviiieenn. 146
SetRaMPTYPE c.evveeeececeeeee e 158
SetReverseClearance............cccoccevcveeennene 130
SetRotencCINCcovvvieiiiin 159
SResetAllSettings ..o 141
StartNewTravelProfile...........cccoccoeiiieen. 142
StartTravelProfilecccooiiiie 127
StopNewTravelProfile ... 142
StopTravelProfile ... 127
StoreRecord. ... 128
TriggerONeveee it 128
WriteAnalogueMaxX..........cccccceeieiiiiiiiiieneenn. 129
WriteAnalogueMin...........cccooiiiiiiiiiieee. 129
WriteBreakcocovvevieiiniiece e 132
WriteChangeDirection.........ccccccccooevivineen.n. 132
WriteCurrentReductioncccccceviieennen. 128
WriteDirection ..o, 137

\) Nanotec’

PLUG & DRIVE

WriteErrorCorrectionRecord...............ccc..e....
WriteExternalNormalRunBehavior
WriteExternalReferenceRunBehavior
WriteExternalSwitchType
WriteFinalySendStatus

WritelnternalNormalRunBehavior

WritelnternalReferenceRunBehavior

WriteMaximumFrequency

WriteNextOperation

WriteNormalFrequency

WriteNumberOfPassesc.ccoceeviieenneen. 131
WriteOperationType.......ccccoecveveeiiiieeeenneen. 137
WritePhaseCurrentccccoooeeiiiiiiiecinnnenn 128
WriteRampccoveeeeeeiiee e 131
WriteReverseEncoderRotatingDirection..... 130
WriteStartFrequency ..., 130
WriteStepMode ..., 135
WriteStepsooovviiiii i, 131
WriteSwingOutTime ..., 129
WriteToleranceWidthccccooieninnen. 129

\Y) Nanotec’

PLUG & DRIVE

4.3 Description of the functions

Methods

There are two categories of methods:
¢ One is the so-called 'Set' method which hands over information to the controller.
e The other is the 'Get' method that fetches the information from the controller. The
value returned in the 'Set' method can be used to check that the information has
also been sent to the controller.
Calling up the status of the objects

Information on the status of the object can be called up explicitly after every call-up of
the method with the following functions:

e Errorflag this function returns the error status
e ErrorNumber this function returns the error number
e ErrorMessageString this function returns a description of the error

43.1 General functions

Errorflag
Definition:
bool Errorflag

This function can be used to query whether an error has occurred.

ErrorNumber
Definition:
int ErrorNumber

This function can be used to query the error number.

ErrorMessageString
Definition:
string ErrorMessageString

This function can be used to query the description of the error.

SerialPorts
Definition:
string[] SerialPorts

This function can be used to query a list of available serial interfaces of the computer
system.

Use:

string[] ports = SelectedPort

\Y) Nanotec’

PLUG & DRIVE

SelectedPort
Definition:
string SelectedPort

This function can be used to set or query the serial interface to be used.

Use:
string port = SelectedPort
port =“COM40”
Selectedport = port
Baud rate
Definition:

int Baudrate

This function can be used to set or query the transfer rate.

GetAvailableMotorAddresses
Definition:
|[List<int> GetAvailableMotorAddresses

This function can be used to query the list of available motor addresses.

MotorAddresse
Definition:
int MotorAddresse

This function is used to set or query the motor address of the COM object previously
created.

\) Nanotec’

PLUG & DRIVE

4.3.2 Status functions for older motors

GetStatusByte
Definition:
byte GetStatusByte()
This function can be used to query the status byte of the controller.
The function corresponds to the serial command '$', see command 2.5.21 Reading out
the status.
IsMotorReady()
Definition:
bool IsMotorReady()

This function returns true if the motor is ready.

IsAtReferencePosition()
Definition:
bool IsAtReferencePosition()

This function returns true if the motor is at the reference position.

HasPositionError
Definition:
bool HasPositionError()

This function returns true if the motor has a position error.

HasEndedTravelProfileAndStartinputStillActive
Definition:
bool HasEndedTravelProfileAndStartinputStillActive()
This function returns true if the travel profile has ended and the start input signal is still
active.
IsPositionModeActive
Definition:
bool IsPositionModeActive()

This function returns true if the positioning mode in the controller is active.

IsSpeedModeActive
Definition:
bool IsSpeedModeActive()

This function returns true if the speed mode in the controller is active.

IsFlagPositionModeActive
Definition:
bool IsFlagPositionModeActive()

This function returns true if the flag positioning mode in the controller is active.

IsClockDirectionModeActive

Definition:

\Y) Nanotec’

PLUG & DRIVE

bool IsFlagPositionModeActive()

This function returns true if the clock direction mode in the controller is active.

IsJoyStickModeActive
Definition:
bool IsJoyStickModeActive()

This function returns true if the joystick mode in the controller is active.

IsAnalogModeActive
Definition:
bool IsAnalogModeActive()

This function returns true if the analog mode in the controller is active.

IsTorgueModeActive
Definition:
bool IsTorqueModeActive()

This function returns true if the torque mode in the controller is active.

\Y) Nanotec’

PLUG & DRIVE

433 Motor control functions for older motors

ResetPositionError
Definition:
bool ResetPositionError()
This function can be used to reset the position error.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x44.

StartTravelProfile
Definition:
bool StartTravelProfile()
This function can be used to start the travel profile.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x41.

StopTravelProfile
Definition:
bool StopTravelProfile()
This function can be used to stop the travel profile.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x53.

IncreaseFrequency
Definition:
bool IncreaseFrequency()
This function increases the frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x2b.

DecreaseFrequency
Definition:
bool DecreaseFrequency()
This function decreases the frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x2d.

\Y) Nanotec’

PLUG & DRIVE

TriggerOn
Definition:
bool TriggerOn()
This function switches the trigger of the motor on.
The value returned by the function can be used to check that the command was
correctly recognized by the controller.
The function corresponds to the serial command 0x54.
StoreRecord

Definition:
bool StoreRecord(int recordNumber)

This function saves the parameters previously set in the record with the number of the
value handed over.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x3e.

WriteCurrentReduction
Definition:
bool WriteCurrentReduction(int currentReduction)

This function sets the current of the current reduction at standstill in percent. Like the
phase current, this current is relative to the end value. Values above 100 should be
avoided.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x72.

WritePhaseCurrent
Definition:
bool WritePhaseCurrent(int phaseCurrent)
This function sets the phase current in percent. Values above 100 should be avoided.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x69.

WriteFinalySendStatus
Definition:
bool WriteFinalySendStatus(bool value)
This function switches the independent sending of a status at the end of a travel:
e value = 0, sending switched off
e value = 1, sending switched on

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x4a.

\Y) Nanotec’

PLUG & DRIVE

WriteAnalogueMin
Definition:
bool WriteAnalogueMin(double min)
This function sets the lower voltage level of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x51.

WriteAnalogueMax
Definition:
bool WriteAnalogueMax(double max)
This function sets the upper voltage level of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x52.

WriteErrorCorrectionRecord
Definition:
bool WriteErrorCorrectionRecord(string value, bool enabled)

This function switches the automatic error correction of the controller on:
¢ Value = the record which is carried out in the event of error

e enabled = 0, error correction switched off

e enabled = 1, error correction switched on

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x46.

WriteToleranceWidth
Definition:
bool WriteToleranceWidth(int value)
This function sets the tolerance width of the controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x58.

WriteSwingOutTime
Definition:
bool WriteSwingOutTime(int value, bool enabled)
This function sets the swing out time of the controller:
¢ Value = values of the swing out time
e enabled = 0, swing out time switched off
e enabled = 1, swing out time switched on

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x4F.

\Y) Nanotec’

PLUG & DRIVE

WriteReverseEncoderRotatingDirection
Definition:
bool WriteReverseEncoderRotatingDirection(bool value)
This function sets the reversal of the encoder direction.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x71.

SetAddress
Definition:
bool SetAddress(int newMotoraddress)
This function sets a new motor address.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x6d.

SetReverseClearance
Definition:
bool SetReverseClearance(int reverseClearence)
This function sets the reverse clearance in steps.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x7a.

ResetCounter
Definition:
bool ResetCounter()
This function sets the position counter to the value 0.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x63.

WriteStartFrequency
Definition:
bool WriteStartFrequency(double frequency)
This function sets the start frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x75.

\Y) Nanotec’

PLUG & DRIVE

WriteRamp
Definition:
bool WriteRamp(int ramp)
This function sets the ramp of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x62.

WriteNumberOfPasses
Definition:
bool WriteNumberOfPasses(int numberOfPasses)
This function sets the number of repetitions for the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x57.

WriteNormalFrequency
Definition:
bool WriteNormalFrequency(double frequency)
This function sets the target frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x6f.

WriteNextOperation
Definition:
bool WriteNextOperation(int operationNumber)
This function sets the next record to be carried out.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x4e.

WriteSteps
Definition:
bool WriteSteps(int steps)
This function sets the number of steps of the motor to be carried out.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x73.

\Y) Nanotec’

PLUG & DRIVE

WriteMaximumFrequency

Definition:
bool WriteMaximumFrequency(double frequency)
This function sets the maximum frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x6e.

ReadChangeDirection

Definition:
bool ReadChangeDirection(int operationNumber)
This function reads the change of direction of the motor:
¢ changeDirection = 0, change of direction switched off
e changeDirection = 1, change of direction switched on

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

WriteChangeDirection

WriteBreak

ReadRecord

Definition:
bool WriteChangeDirection(bool changeDirection)

This function switches on the change of direction of the motor:
e changeDirection = 0, change of direction switched off
¢ changeDirection = 1, change of direction switched on

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x74.

Definition:
bool WriteBreak(double brakTime)
This function sets the pause time of the motor in milliseconds.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 0x50.

Definition:
int ReadRecord(int operationNumber)
This function reads a record (data record) of the motor.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

\Y) Nanotec’

PLUG & DRIVE

ReadAddress
Definition:
bool ReadAddress(int operationNumber)
This function reads the motor address of the connected motor.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x4d.
Attention:
When using this command, only one motor should be connected.
ReadCounter
Definition:
bool ReadCounter(double operationNumber)
This function reads the current position of the motor.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x43.

ReadStartFrequency
Definition:
double ReadStartFrequency(int operationNumber)
This function reads the start frequency of the motor.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

ReadRamp
Definition:
int ReadRamp(int operationNumber)
This function reads the ramp of the motor.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

ReadNumberOfPasses
Definition:
int ReadNumberOfPasses(int operationNumber)
This function reads the number of runs of the motor.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

\Y) Nanotec’

PLUG & DRIVE

ReadNormalFrequency
Definition:
double ReadNormalFrequency(int operationNumber)
This function reads the target frequency of the motor.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

ReadNextOperation
Definition:
int ReadNextOperation(int operationNumber)
This function reads the number of the next record (travel profile) to be carried out.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

ReadSteps
Definition:
int ReadSteps(int operationNumber)
This function reads the number of the steps set in the controller of the motor.
Here the operationNumber parameter is the record number (travel profile) that should
be read from.
The function uses the serial command 0x5a.
ReadMemory

Definition:
int ReadMemory(int speicherAddress)

This function reads a value from a specific memory address. The memory address is
handed over as a parameter.

The function uses the serial command 0x5a.

ReadMaximumFrequency
Definition:
int ReadMaximumFrequency(int operationNumber)
This function reads the maximum frequency of the motor.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

ReadBreak
Definition:
int ReadBreak(int operationNumber)
This function reads the pause time of the motor in milliseconds.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

\Y) Nanotec’

PLUG & DRIVE

ReadCurrentReduction

Definition:

int ReadCurrentReduction(int operationNumber)

This function reads the current reduction at standstill in percent.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

ReadPhaseCurrent

Definition:

int ReadPhaseCurrent(int operationNumber)

This function reads the phase current of the motor in percent.

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

GetOperationMode

Definition:

int GetOperationMode()

This function reads the operation mode of the motor that is currently active:

Return 1 corresponds to positioning mode
Return = 2 corresponds to speed mode

Return = 3 corresponds to flag positioning mode
Return = 4 corresponds to clock direction mode

The function uses the serial command 0x21.

WriteStepMode

Definition:

bool WriteStepMode(int stepMode)

This function sets the step mode of the motor:

stepMode = 0 corresponds to a full step

stepMode = 1 corresponds to half of a step

stepMode = 2 corresponds to a quarter of a step
stepMode = 3 corresponds to a fifth of a step

stepMode = 4 corresponds to an eighth of a step
stepMode = 5 corresponds to a tenth of a step
stepMode = 6 corresponds to a sixteenth of a step
stepMode = 7 corresponds to a thirty-secondth of a step
stepMode = 8 corresponds to a sixty-fourth of a step
stepMode = 9 corresponds to adaptive microstep

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function uses the serial command 0x67.

\Y) Nanotec’

PLUG & DRIVE

WritelnternalNormalRunBehavior
Definition:
bool WritelnternalNormalRunBehavior(int normalRunBehavior)

This function sets the limit switch behavior during the normal internal run of the motor:
¢ normalRunBehavior = 0 corresponds to disable

e normalRunBehavior = 1 corresponds to free backwards

¢ normalRunBehavior = 2 corresponds to free forwards

¢ normalRunBehavior = 3 corresponds to stop

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function uses the serial command 0x65.

WritelnternalReferenceRunBehavior
Definition:
bool WritelnternalReferenceRunBehavior(int refrenceBehavior)

This function sets the limit switch behavior during the internal reference run of the
motor:

¢ refrenceBehavior = 0 corresponds to free backwards
o refrenceBehavior = 1 corresponds to free forwards

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function uses the serial command 0x65.

WriteExternalSwitchType
Definition:
int WriteExternalSwitchType (int switchType)

This function sets the external limit switch type of the motor:
e switchType = 0 corresponds to opener
e switchType = 1 corresponds to closer

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function uses the serial command 0x6c¢.

WriteExternalNormalRunBehavior
Definition:
bool WriteExternalNormalRunBehavior(int normalRunBehavior)

This function sets the limit switch behavior during an external normal run of the motor:
¢ normalRunBehavior = 0 corresponds to disable

e normalRunBehavior = 1 corresponds to free backwards

¢ normalRunBehavior = 2 corresponds to free forwards

e normalRunBehavior = 3 corresponds to stop

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function uses the serial command 0x65.

\Y) Nanotec’

PLUG & DRIVE

WriteExternalReferenceRunBehavior
Definition:
bool WriteExternalReferenceRunBehavior(int refrenceBehavior)

This function sets the limit switch behavior during an external reference run of the
motor:

o refrenceBehavior = 0 corresponds to free backwards
o refrenceBehavior = 1 corresponds to free forwards

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function uses the serial command 0x65.

WriteOperationType
Definition:
bool WriteOperationType(int operationType)
This function sets the operation type of the motor:
e operationType = 0 corresponds to relative; depends on the operation mode
e operationType = 1 corresponds to absolute; depends on the operation mode
e operationType = 3 corresponds to an internal reference run
e operationType = 4 corresponds to an external reference run

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function uses the serial command 0x70.

ReadOperationType
Definition:
int ReadOperationType(int operationNumber)
This function reads the selected operation type of the motor.
e Return = 0 corresponds to relative; depends on the operation mode
e Return = 1 corresponds to absolute; depends on the operation mode
e Return = 3 corresponds to an internal reference run
e Return =4 corresponds to an external reference run

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

WriteDirection
Definition:
bool WriteDirection(int direction)

This function sets the direction of rotation of the motor:
e direction = 0 corresponds to left
e direction = 1 corresponds to right

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function uses the serial command 0x64.

\Y) Nanotec’

PLUG & DRIVE

ReadDirection
Definition:
int ReadDirection(int operationNumber)

This function reads the direction of rotation of the motor:
e Return = 0 corresponds to left
e Return = 1 corresponds to right

Here the operationNumber parameter is the record number (travel profile) that should
be read from.

The function uses the serial command 0x5a.

ReadReverseClearance
Definition:
int ReadReverseClearance()
This function reads the reverse clearance of the motor.

The function uses the serial command 0x5a.

\) Nanotec’

PLUG & DRIVE

434 Status functions for newer motors

GetNewStatus
Definition:
byte GetNewStatus()

This function can be used to query the status of the controller.

IsNewMotorReady
Definition:
bool IsNewMotorReady/()

This function returns true if the motor is ready.

IsAtNewReferencePosition
Definition:
bool IsAtNewReferencePosition()

This function returns true if the motor is at the reference position.

HasNewPositionError
Definition:
bool HasNewPositionError()

This function returns true if the motor has a position error.

HasNewEndedTravelProfileAndStartinputStillActive
Definition:
bool HasNewEndedTravelProfileAndStartinputStillActive()
This function returns true if the travel profile has ended and the start input signal is still
active.
IsNewPositionModeActive
Definition:
bool IsNewPositionModeActive()

This function returns true if the positioning mode in the controller is active.

IsNewSpeedModeActive
Definition:
bool IsNewSpeedModeActive()

This function returns true if the speed mode in the controller is active.

IsNewFlagPositionModeActive
Definition:
bool IsNewFlagPositionModeActive()

This function returns true if the flag positioning mode in the controller is active.

\Y) Nanotec’

PLUG & DRIVE

IsNewClockDirectionModeActive
Definition:
bool IsNewFlagPositionModeActive()

This function returns true if the clock direction mode in the controller is active.

IsNewNewJoyStickModeActive
Definition:
bool IsNewJoyStickModeActive()

This function returns true if the joystick mode in the controller is active.

IsNewAnalogModeActive
Definition:
bool IsNewAnalogModeActive()

This function returns true if the analog mode in the controller is active.

IsNewTorqueModeActive
Definition:
bool IsNewTorqueModeActive()

This function returns true if the torque mode in the controller is active.

\Y) Nanotec’

PLUG & DRIVE

435 Motor control functions for newer motors
SetNewSoftware
Definition:

bool SetNewSoftware(bool value)

This function sets the information that a corresponding (newer) command set for the
motor should be selected for the COM object.

0 corresponds to yes

1 corresponds to no

ResetAllSettings
Definition:
bool ResetAllSettings()

This function sets the settings of the controller back to default values (factory default
settings).

The function corresponds to the serial command '~', see command 2.5.28 Carrying
out an EEPROM reset.
GetNewVersion
Definition:
string GetNewVersion()
This function reads the version text from the controller.
The function corresponds to the serial command 'v', see command 2.5.22 Reading out
the firmware version.
ResetNewPositionError
Definition:
bool ResetNewPositionError()
This function can be used to reset the position error.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'D', see command 2.5.14 Resetting
the position error.
SetNewSendStatusWhenCompleted
Definition:
bool SetNewSendStatusWhenCompleted(bool sendStatus)
This function switches the independent sending of a status at the end of a travel:
e sendStatus = 0, sending switched off
e sendStatus = 1, sending switched on

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'J', see command 2.5.29 Setting
automatic sending of the status.

\Y) Nanotec’

PLUG & DRIVE

GetNewSendStatusWhenCompleted
Definition:
bool GetNewSendStatusWhenCompleted()

This function reads whether the independent sending of a status at the end of a travel
is switched on:

e Return = 0, sending switched off
e Return =1, sending switched on
The function corresponds to the serial command 'J', see command 2.5.29 Setting
automatic sending of the status.
GetNewPosition
Definition:
int GetNewPosition()
This function reads the current position of the motor.
The function corresponds to the serial command 'C', see command 2.5.17 Reading
out the position.
ResetNewPosition
Definition:
bool ResetNewPosition()
This function sets the position counter to the value 0.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'c', see command 2.5.18 Resetting
the position.
StartNewTravelProfile
Definition:
bool StartNewTravelProfile()
This function can be used to start the travel profile.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'A’, see command 2.6.1 Starting the
motor.
StopNewTravelProfile
Definition:
bool StopNewTravelProfile()
This function can be used to stop the travel profile.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'S', see command 2.6.2 Stopping a
motor.

\Y) Nanotec’

PLUG & DRIVE

IncreaseNewFrequency
Definition:
bool IncreaseNewFrequency()
This function increases the frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command '+', see command 2.7.7 Increasing
the speed.
DecreaseNewFrequency
Definition:
bool DecreaseNewFrequency/()
This function decreases the frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command '-', see command 2.7.8 Reducing the
speed.
NewTriggerOn
Definition:
bool NewTriggerOn()
This function switches the trigger of the motor on.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'T', see command 2.7.9 Actuating the
trigger.
ChooseNewRecord
Definition:
bool ChooseNewRecord(int recordNumber)
This function reads a specific record (travel profile) of the motor.
The recordNumber parameter is the record number (travel profile) that should be read.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'y', see command 2.6.3 Loading a
record from the EEPROM.
SetNewRecord
Definition:
bool SetNewRecord(int recordNumber)
This function writes a new specific record (travel profile) of the motor.

The recordNumber parameter is the record number (travel profile) that should be
written.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command '>', see command 2.6.5 Saving a
record.

\Y) Nanotec’

PLUG & DRIVE

SetNewPlay
Definition:
bool SetNewPlay(int play)
This function sets the dead range of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command '=', see command 2.7.1 Setting the
dead range for the joystick mode.
GetNewPlay
Definition:
int GetNewPlay()
This function reads the dead range of the motor.
The function corresponds to the serial command '=', see command 2.7.1 Setting the
dead range for the joystick mode.
SetNewSoftwareFilter
Definition:
bool SetNewSoftwareFilter(int softwareFilter)
This function sets the filter of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'f', see command 2.7.2 Setting the
filter for the analog and joystick modes.

GetNewSoftwareFilter
Definition:
int GetNew SoftwareFilter()
This function reads the filter of the motor.

The function corresponds to the serial command 'f', see command 2.7.2 Setting the
filter for the analog and joystick modes.

SetNewStepMode
Definition:
bool SetNew StepMode(int stepMode)
This function sets the step mode of the motor:
o stepMode = 0 corresponds to a full step
o stepMode = 1 corresponds to half of a step
o stepMode = 2 corresponds to a quarter of a step
e stepMode = 3 corresponds to a fifth of a step
o stepMode = 4 corresponds to an eighth of a step
o stepMode = 5 corresponds to a tenth of a step
o stepMode = 6 corresponds to a sixteenth of a step

)] Nanatec

PLUG & DRIVE

e stepMode = 7 corresponds to a thirty-secondth of a step
o stepMode = 8 corresponds to a sixty-fourth of a step
o stepMode = 9 corresponds to adaptive microstep

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'g', see command 2.5.3 Setting the
step mode.
GetNewStepMode
Definition:
int GetNew StepMode()
This function reads the step mode of the motor:
e Return = 0 corresponds to full step
e Return =1 corresponds to half of a step
e Return = 2 corresponds to a quarter of a step
e Return = 3 corresponds to a fifth of a step
e Return = 4 corresponds to an eighth of a step
e Return =5 corresponds to a tenth of a step
e Return = 6 corresponds to a sixteenth of a step
e Return = 7 corresponds to a thirty-secondth of a step
e Return = 8 corresponds to a sixty-fourth of a step
e Return =9 corresponds to adaptive microstep
The function corresponds to the serial command 'g', see command 2.5.3 Setting the
step mode.
SetNewMotorAddress
Definition:
bool SetNewMotorAddress(int motorNumber)
This function sets a new motor address.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'm', see command 2.5.4 Setting the
motor address.
GetNewMotorAddress
Definition:
int GetNewMotorAddress()
This function reads the motor address.

The function corresponds to the serial command 'M', see command 2.5.20 Reading
out the motor address.

Attention:
For using this command, only one motor must be connected.

\Y) Nanotec’

PLUG & DRIVE

GetNewErrorAddress
Definition:
int GetNewErrorAddress()

This function reads the error address at which the last error code is found from the
controller.

The function corresponds to the serial command 'E', see command 2.5.15 Reading
out the error memory.
GetNewError
Definition:
int GetNewError(int errorAddress)
This function reads the error (status) to the address handed over.
The function corresponds to the serial command 'E', see command 2.5.15 Reading
out the error memory.
SetNewEnableAutoCorrect
Definition:
bool SetNewEnableAutoCorrect(string recordNumber, bool autocorrct)
This function switches on the automatic error correction of the motor.

The recordNumber parameter is the record number (travel profile) for which the error
correction should be switched on.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'F', see command 2.5.10 Setting the
record for auto correction.
SetNewSwingOutTime
Definition:
bool WriteSwingOutTime(int value)
This function sets the swing out time of the controller.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'O’, see command 2.5.12 Setting the
settling time.
GetNewSwingOutTime
Definition:
int GetNewSwingOutTime()
This function reads the swing out time of the controller.

The function corresponds to the serial command 'O’, see command 2.5.12 Setting the
settling time.

\Y) Nanotec’

PLUG & DRIVE

SetNewNextRecord
Definition:
bool SetNextRecord(int recordNumber)
This function sets the next record to be carried out.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'N', see command 2.6.19 Setting the
continuation record.

GetNewNextRecord
Definition:
int GetNextRecord(int recordNumber)
This function reads the next record to be carried out.

Here the recordNumber parameter is the record number (travel profile) for which the
next record should be read.

The function corresponds to the serial command 'N', see command 2.6.19 Setting the
continuation record.

SetNewOperationMode
Definition:
bool SetNewOperationMode(int operationMode)
This function sets the operation mode:
e operationMode = 1 corresponds to positioning mode
e operationMode = 2 corresponds to speed mode
e operationMode = 3 corresponds to flag positioning mode
e operationMode = 4 corresponds to clock direction mode
e operationMode = 5 corresponds to analog mode
e operationMode = 6 corresponds to joystick mode
e operationMode = 7 corresponds to analog positioning mode
e operationMode = 9 corresponds to torque mode

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command "', see command 2.5.5 Setting the
motor mode.

GetNewOperationMode
Definition:
int GetNewOperationMode()
This function reads the operation mode that is currently active:
e Return 1 corresponds to positioning mode
e Return = 2 corresponds to speed mode
e Return = 3 corresponds to flag positioning mode
o Return =4 corresponds to clock direction mode
e Return =5 corresponds to analog mode
e Return = 6 corresponds to joystick mode

\Y) Nanotec’

PLUG & DRIVE

e Return =7 corresponds to analog positioning mode
e Return =9 corresponds to torque mode

The function corresponds to the serial command '!', see command 2.5.5 Setting the
motor mode.
SetNewPhaseCurrent
Definition:
bool SetNewDirection(int phaseCurrent)
This function sets the phase current in percent. Values above 100 should be avoided.
The function corresponds to the serial command 'r', see command 2.5.2 Setting the
phase current at a standstill.
GetNewPhaseCurrent
Definition:
int GetNewPhaseCurrent()
This function reads the phase current in percent.
The function corresponds to the serial command 'i', see command 2.5.1 Setting the
phase current.
SetNewCurrentReduction
Definition:
bool SetNewCurrentReduction(int currentReduktion)

This function sets the current of the current reduction at standstill in percent. Like the
phase current, this current is relative to the end value. Values above 100 should be
avoided.

The function corresponds to the serial command 'r', see command 2.5.2 Setting the
phase current at a standstill.
GetNewCurrentReduction
Definition:
int GetNewCurrentReductiont()
This function sets the current of the current reduction at standstill in percent.
The function corresponds to the serial command 'r', see command 2.5.2 Setting the
phase current at a standstill.
SetNewLimitSwitchType
Definition:
int SetNewLimitSwitchType(int switchType)
This function sets the external limit switch type of the motor:

e switchType = 0 corresponds to opener
e switchType = 1 corresponds to closer

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function uses the serial command 'e', see command 2.5.7 Setting the limit switch
type.

\Y) Nanotec’

PLUG & DRIVE

GetNewLimitSwitchType
Definition:
int GetNewLimitSwitchType()
This function reads the external limit switch type of the motor:
e switchType = 0 corresponds to opener
e switchType = 1 corresponds to closer
The function uses the serial command 'e', see command 2.5.7 Setting the limit switch
type.
SetNewReverseClearance
Definition:
bool SetNewReverseClearance(int reverseClearence)
This function sets the reverse clearance in steps.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'z', see command 2.5.31 Setting the
reverse clearance.
GetNewReverseClearance
Definition:
int GetNewReverseClearance()
This function reads the reverse clearance in steps.
The function corresponds to the serial command 'z', see command 2.5.31 Setting the
reverse clearance.
SetNewMotorStepAngel
Definition:
bool SetNewMotorStepAngele(int stepAngle)
This function sets the motor step angle:
e stepAngle=9 corresponds to 0.9°
e stepAngle =18 corresponds to 1.8°
e stepAngle =375 corresponds to 3.75°
e stepAngle =75 corresponds to 75°
e stepAngle = 150 corresponds to 150°
e stepAngle = 180 corresponds to 180°

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'a’, see command 2.5.8 Setting the
step angle.

\Y) Nanotec’

PLUG & DRIVE

GetNewMotorStepAngel
Definition:
int GetNewMotorStepAngel()

This function reads the motor step angle:
e Return=9 corresponds to 0.9°
e Return = 18 corresponds to 1.8°

e Return =375 corresponds to 3.75°
e Return =75 corresponds to 75°

e Return =150 corresponds to 150°
e Return =180 corresponds to 180°

The function corresponds to the serial command 'a’, see command 2.5.8 Setting the
step angle.
SetNewAnalogueMin
Definition:
bool SetNewAnalogueMin(double analoqueMin)
This function sets the minimum analog voltage.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'Q’, see command 2.7.3 Setting the
minimum voltage for the analog mode.
GetNewAnalogueMin
Definition:
double GetNewAnalogueMin()
This function reads the minimum analog voltage.
The function corresponds to the serial command 'Q’, see command 2.7.3 Setting the
minimum voltage for the analog mode.
SetNewAnalogueMax
Definition:
bool SetNewAnalogueMax(double analoqueMin)
This function sets the maximum analog voltage.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'R', see command 2.7.4 Setting the
maximum voltage for the analog mode.
GetNewAnalogueMax
Definition:
double GetNewAnalogueMax()
This function reads the maximum analog voltage.

The function corresponds to the serial command 'R’, see command 2.7.4 Setting the
maximum voltage for the analog mode.

\Y) Nanotec’

PLUG & DRIVE

SetNewAngelDeviationMax
Definition:
bool SetNewAngelDeviationMax(int deviation)
Function sets the maximum angular deviation of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'X', see command 2.5.13 Setting the
maximum encoder deviation.
GetNewAngelDeviationMax
Definition:
double GetNewAngelDeviationMax()
This function reads the maximum angular deviation of the motor.
The function corresponds to the serial command 'X', see command 2.5.13 Setting the
maximum encoder deviation.
SetNewPositionType
Definition:
bool SetNewPositionType(int positionType)
This function sets the motor step angle:
e positionType = 1 corresponds to relative; depends on the operation mode
e positionType = 2 corresponds to absolute; depends on the operation mode
e positionType = 3 corresponds to internal reference run
e positionType = 4 corresponds to external reference run

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'p’, see commande 2.6.6 Setting

positioning mode (old scheme) and 2.6.7 Setting the positioning mode (new
scheme).

GetNewPositionType
Definition:
int GetNewPositionType(int operationNumber)
This function reads the motor step angle:
e Return =1 corresponds to relative; depends on the operation mode
e Return = 2 corresponds to absolute; depends on the operation mode
e Return = 3 corresponds to internal reference run
e Return =4 corresponds to external reference run

Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.

The function corresponds to the serial command 'p', see command 2.6.6 Setting
positioning mode (old scheme) and 2.6.7 Setting the positioning mode (new
scheme).

\Y) Nanotec’

PLUG & DRIVE

SetNewSteps
Definition:
bool SetNewSteps(int steps)
This function sets the number of steps.
The value returned by the function can be used to check that the command was
correctly recognized by the controller.
The function corresponds to the serial command 's', see command 2.6.8 Setting the
travel distance.
GetNewSteps
Definition:
int GetNew Steps(int operationNumber)
This function reads the number of steps.
Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.
The function corresponds to the serial command 's', see command 2.6.8 Setting the
travel distance.
SetNewStartFrequency
Definition:
bool SetNewStartFrequency(int startFreugenz)
This function sets the start frequency of the motor.
The value returned by the function can be used to check that the command was
correctly recognized by the controller.
The function corresponds to the serial command 'u’, see command 2.6.9 Setting the
minimum frequency.
GetNewStartFrequency
Definition:
int GetNewStartFrequency(int operationNumber)
This function reads the start frequency of the motor.
Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.
The function corresponds to the serial command 'u’, see command 2.6.9 Setting the
minimum frequency.
SetNewMaxFrequency

Definition:
bool SetNewMaxFrequency(int maxFreugenz)
This function sets the target frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'o’, see command 2.6.10 Setting the
maximum frequency.

\YNan

otec’

UG & DRIVE

GetNewMaxFrequency

Definition:
int GetNewMaxFrequency(int operationNumber)
This function reads the target frequency of the motor.

Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.

The function corresponds to the serial command 'o', see command 2.6.10 Setting the
maximum frequency.

SetNewMaxFrequency2

Definition:
bool SetNewMaxFrequency2(int maxFreugenz)
This function sets the maximum frequency of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'n', see command 2.6.11 Setting the
maximum frequency 2.

GetNewMaxFrequency?2

Definition:
int GetNewMaxFrequency2(int operationNumber)
This function reads the maximum frequency of the motor.

Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.

The function corresponds to the serial command 'n', see command 2.6.11 Setting the
maximum frequency 2.

NewSuppressResponse

SetNewRamp

Definition:
bool NewSuppressResponse(int suppress)
This function activates or deactivates the response suppression on sending:
e suppress = 0 corresponds to switched on
e suppress = 1 corresponds to switched off

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command '|', see command 2.6.4 Reading out
the current record.

Definition:
bool SetNewRamp(int ramp)
This function sets the ramp.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'b’, see command 2.6.12 Setting the
acceleration ramp.

\Y) Nanotec’

PLUG & DRIVE

GetNewRamp

Definition:
int GetNewRamp(int operationNumber)
This function reads the ramp.

Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.

The function corresponds to the serial command 'b', see command 2.6.12 Setting the
acceleration ramp.

SetNewRotationMode

Definition:

bool SetNewRotationMode(int rotationMode)
This function sets the encoder monitoring mode:
¢ rotationMode = 0 corresponds to switched off
¢ rotationMode = 1 corresponds to checking at the end
¢ rotationMode = 2 corresponds to checking in between

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'U’, see command 2.5.9 Setting the
error correction mode.

GetNewRotationMode

Definition:

int GetNewRotationMode()
This function reads the encoder monitoring mode:
e Return = 0 corresponds to switched off
e Return = 1 corresponds to checking at the end
e Return = 2 corresponds to checking in between

The function corresponds to the serial command 'U', see command 2.5.9 Setting the
error correction mode.

SetNewDirection

Definition:
bool SetNewDirection(int direction)
This function sets the direction of rotation of the motor.
Possible parameters are:
e 0 corresponds to the direction of rotation, left
¢ 1 corresponds to the direction of rotation, right

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'd', see command 2.6.15 Setting the
direction of rotation.

\Y) Nanotec’

PLUG & DRIVE

GetNewDirection
Definition:
int GetNewDirection(int operationNumber)
This function reads the direction of rotation of the motor.
Possible return values are:
e 0 corresponds to the direction of rotation, left
e 1 corresponds to the direction of rotation, right

Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.

The function corresponds to the serial command 'd', see command 2.6.15 Setting the
direction of rotation.
SetNewDirectionReverse
Definition:
bool SetNewDirectionReverse(bool directionReverse)
This function sets the reversal in the direction of rotation of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 't', see command 2.6.16 Setting the
change of direction.
GetNewDirectionReverse
Definition:
bool GetNewDirectionReverse(int operationNumber)
This function reads the reversal in the direction of rotation of the motor.

Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.

The function corresponds to the serial command 't', see command 2.6.16 Setting the
change of direction.
SetNewEncoderDirection
Definition:
bool SetNewEncoderDirection(bool encoderDirection)

This function sets whether the encoder rotation direction of the motor should be
reversed.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'q', see command 2.5.11 Setting the
encoder direction.
GetNewEncoderDirection
Definition:
bool GetNewEncoderDirection()

This function reads whether the encoder rotation direction of the motor will be
reversed.

The function corresponds to the serial command 'q', see command 2.5.11 Setting the
encoder direction.

\Y) Nanotec’

PLUG & DRIVE

SetNewBreak

GetNewBreak

SetNewRepeat

GetNewRepeat

SetlO

Definition:
bool SetNewBreak(double breakTime)
This function sets the pause time of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'P', see command 2.6.18 Setting the
record pause.

Definition:
int GetNewBreak(int operationNumber)
This function reads the pause time of the motor.

Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.

The function corresponds to the serial command 'P', see command 2.6.18 Setting the
record pause.

Definition:
bool SetNewRepeat(int repeat)
This function sets the repetitions of the motor.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'W', see command 2.6.17 Setting the
repetitions.

Definition:
int GetNewRepeat(int operationNumber)
This function reads the repetitions of the motor.

Here the operationNumber parameter is the record number (travel profile) from which
the position type should be read.

The function corresponds to the serial command 'W', see command 2.6.17 Setting the
repetitions.

Definition:
bool SetlO(int io)
This function sets the status of the inputs as integer mask.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'Y', see command 2.5.27 Setting the
outputs.

Y Nan

otec’

/G & DRIVE

GetlO

SetinputMask

GetlnputMask

Definition:
int GetlO()
This function reads the status of the inputs as integer mask.

The function corresponds to the serial command "Y', see command 2.5.27 Setting the
outputs.

Definition:
bool SetinputMask(int ioMask)
This function sets the mask of how the inputs should react (falling or rising flanks).

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'L', see command 2.5.24 Masking
and demasking the inputs.

Definition:
int GetlnputMask()
This function reads the mask of how the inputs react (falling or rising flanks).

The function corresponds to the serial command 'L', see command 2.5.24 Masking
and demasking the inputs.

SetlnputMaskEdge

Definition:
bool SetinputMaskEdge(int ioMask)
This function sets the mask of how the inputs should react (falling or rising flanks).

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'h’, see command 2.5.25 Reversing
the polarity of the inputs and outputs.

GetlnputMaskEdge

Definition:
int GetinputMaskEdge()
This function reads the mask of how the inputs react (falling or rising flanks).

The function corresponds to the serial command 'h', see command 2.5.25 Reversing
the polarity of the inputs and outputs.

\Y) Nanotec’

PLUG & DRIVE

SetRampType

GetRampType

Definition:
bool SetRampType(int rampType)
This function sets the ramp type:
o rampType = 0 corresponds to trapezoidal ramp
e rampType = 1 corresponds to sinusoidal ramp

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'ramp_mode', see command 2.5.32
Setting the ramp.

Definition:
int GetRampType()
This function reads the ramp type:
e Return = 0 corresponds to trapezoidal ramp
e Return =1 corresponds to sinusoidal ramp

The function corresponds to the serial command 'ramp_mode', see command 2.5.32
Setting the ramp.

GetEncoderRotary

SetBraleTA

GetBrakeTA

Definition:
int GetEncoderRotary()
This function reads the encoder position.

The function corresponds to the serial command 'l', see command 2.5.16 Reading out
the encoder position.

Definition:
bool SetBraleTA(uint32 brake)
This function sets the TA value for the external brake.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'brake_ta', see command 2.5.35
Setting the wait time for switching off the brake voltage.

Definition:
unit32 GetBrakeTA()
This function reads the TA value of the external brake.

The function corresponds to the serial command 'brake_ta', see command 2.5.35
Setting the wait time for switching off the brake voltage.

Y Nan

otec’

UG & DRIVE

SetBrakeTB

GetBrakeTB

SetBrakeTC

GetBrakeTC

SetRotencinc

Definition:
bool SetBrakeTB(uint32 brake)
This function sets the TB value for the external brake.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'brake_tb', see command 2.5.36
Setting the wait time for the motor movement.

Definition:
unit32 GetBrakeTB()
This function reads the TB value of the external brake.

The function corresponds to the serial command 'brake_tb', see command 2.5.36
Setting the wait time for the motor movement.

Definition:
bool SetBrakeTC(uint32 brake)
This function sets the TC value for the external brake.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'brake_tc', see command 2.5.37
Setting the wait time for switching off the motor current.

Definition:
unit32 GetBrakeTC()
This function reads the TC value of the external brake.

The function corresponds to the serial command 'brake_tc', see command 2.5.37
Setting the wait time for switching off the motor current.

Definition:
bool SetRotenclInc(int rotationinc)
This function sets the encoder resolution.

The value returned by the function can be used to check that the command was
correctly recognized by the controller.

The function corresponds to the serial command 'CL_rotenc_inc', see command
2.9.10 Setting the number of increments.

Programming manual .’) Nanote‘_-@
Valid for firmware version 10.10.2009 PhHe. S BRIve
Programming via the COM interface

GetRotenclinc
Definition:
int GetRotenclInc()
This function reads the encoder resolution.

The function corresponds to the serial command 'CL_rotenc_inc', see command
2.9.10 Setting the number of increments.

160 Issue: V 2.3

\Y) Nanotec’

PLUG & DRIVE

4.4 Programming examples

Introduction
A brief list of example programs follows. The programs themselves are available as
source code and in the compiled form in the “Example” directory of the NanoPro
software. There is also a project file for Visual Studio for the examples.
OfficeExample
This example can be executed in Excel by means of VBA.
To carry out the example, the COM port and the transfer rate must be set.
There are 2 ways of actuating a motor:
e to let a number of steps be travelled
¢ tolet a predefined record be carried out in the controller.

VBAExample
There are two modes in this example:
¢ the positioning mode and
¢ the speed mode.

The baud rate and the serial port must also be set. This example uses the PD41.dl|
command as a reference in the project. No COM interface is used here.

The motor address 1 is assumed in this example.

VBACommandsPD4IExample-2Motor
This example is similar to the example of VBAExample, but two motors are actuated
here.

ManagedC++CommandsPD4l

This is set up in exactly the same way as VBAExample, but Managed C++ Code is
used here.

The motor address 1 is assumed in this example.

UnManagedC++CommandsPD4l

This is set up in exactly the same way as VBAExample, but Unmanaged C++ Code is
used here.

The motor address 1 is assumed in this example.

\Y) Nanotec’

PLUG & DRIVE

Index

A

Activating closed-loop modecccccco..... 60
Activating the scope modeccccceeeee.n. 83
Activating, closed-loop mode 60
Actuating the trigger ... 56

Adjusting the time until the current reduction 55

Analog input

reading out the voltagecccoveeeeeeen. 86
Automatic start of the Java program when
switching on the controller............................. 58
C
Carrying out an EEPROM reset 34, 141

Cascading position controller

setting the denominator of the D component

setting the numerator of the D component 78

setting the numerator of the | component..77

setting the numerator of the P component.76
Cascading speed controller

setting the numerator of the P component.70
Cascading speed controller

setting the denominator of the P component

Cascading speed controller
setting the numerator of the | component..71
Cascading speed controller

setting the denominator of the | component

Cascading speed controller
setting the numerator of the D component 72
Cascading speed controller

setting the denominator of the D component

Change commandccccceevviieieiniiene e, 12

Class

COMM ittt 99
MV 99
io 107
UL 108
Classes and functions............ccccccevieeinneenne 99
Closed loop settings........cceveeeeeiiiciiiiieeeeeennn. 60
Closed loop test run
correction valuescccoecveeeiniiee e, 79
COM interface.......cccoovveeiiiiieiiiiiiece e 119
fuNCioNS ..o 123
general functions...........ccccoviieeiiiiencns 123

motor control functions for newer motors 141

motor control functions for older motors . 127

programming examples...........cccccceeeeeennn. 161

status functions for newer motors 139

status functions for older motors............. 125
Commands for JAVA program........cccc.ccce..e. 57
Configuration of the SMCP33/PD4-N current
CONMIOIIET ... 89
Configuring the PD4-N current controller 89
Configuring the SMCP33 current controller.. 89
Controller command structure 10
Controller response.........ccccceeeeeeiciieeeenaaenn. 10
Controller status..........cccoeiiiiiiii 26

Correction values, test run, CL mode

current controllercccocceveiniiieeeeeneee. 80
l0ad angle........ccoooiiiiiiiiiiiiiee e 79
position controller..........cccccoooevciiiieeeeeennn. 81
speed controller...........ccovevciiiieeeeeeeeccnns 80

Correction values, test run, CL mode

reading out the encoder/motor offset......... 79
Correction values, test run, closed loop mode
.. 79
D
DebounCing........cccooeeeeiiiiieeiiiee e 32
Debouncing inputsccceeiiiiiieiiniieee e, 32
Demasking inputsccoceeeiniiiiiiiienenn, 31

\Y) Nanotec’

PLUG & DRIVE

E
Error codesoooiiiee 26
F
Following error
setting the maximum allowed 62
setting the maximum time.......................... 63
I
Increasing the speedcccoocviiiiiiiieee i, 55
Increments
setting the number ... 65
Integration of @ SCOPEe.......cooecvviiiieeieeeeiie 82
J
Java
manual translation and transfer without
NanOJEASYccveveviiiiiieeeee e, 113
NanNOJEASY......cceeveiiiiiiiiiiiee e 92
Programmingcccooceeeeeineeeeesiieeeeeaneeeeess 92
Java error messagesoocvveeeviiieeeeiiineeenn 117

Java program

reading OUt €rrorceoviieeeeiiiiiee e 58
reading out the warningcccccoeeee 59
starting a loaded program............cccuveeeenen. 57
starting automatically when switching on the
CONMIOIlEr ... 58
stopping the running ..., 57
transferring to the controller....................... 57
verifying loaded programccccceeenee 58
Java programming examples 109
K
KeYWOrdSooviiiiiiiiieeeee e 11
L

Limit position

setting the time for the tolerance window ..62

setting the tolerance window 61
Loading a record from the EEPROM............. 40
Long command format............ccccceeviiieeeinnnen. 11
Long command structure............ccccceeeveinnnee 11

M
Masking iNputScoeeiiiiiiiiiiieee e, 31
Maximum speed deviation 63
Motor

setting the pole pairs.........cccccceeiiiiiiinnnee. 64
Motor is referenced...........cccoecveeeiieneeenen. 28
N
NanOJEASY.....ccooiiiiiii e 92
P

Position controller

setting the denominator of the D component
... 75

setting the denominator of the | component
... 74

setting the denominator of the P component
... 73

setting the numerator of the D component 75
setting the numerator of the | component . 74

setting the numerator of the P component 73

Programming examples, Java.................... 109
R
Ramp generator

reading out the setpoint position 84
Read command...........cccooeieiiiiiieneenen. 11, 16
Reading out error of the Java program......... 58
Reading out the actual position of the encoder
.. 84
Reading out the actual voltage of the controller
.. 85
Reading out the CAN bus load 87

Reading out the closed loop mode status 61

Reading out the correction values of the

current controller...........ccccooiiiiiiiiiis 80
Reading out the correction values of the

position controller.............ccccooeeeee 81
Reading out the correction values of the speed
CONMIOIIET ... 80
Reading out the current record...................... 41
Reading out the digital inputs 86
Reading out the encoder position................. 27

Reading out the encoder/motor offset 79

\Y) Nanotec’

PLUG & DRIVE

Reading out the error memoryc........ 26
Reading out the firmware version.................. 30
Reading out the firmware version (old) 30
Reading out the following error 88

Reading out the load angle of the motor 79

Reading out the motor address...................... 28
Reading out the position............cccccceeeeiiinnne 27
Reading out the setpoint current of the motor

CONtroller ... 85
Reading out the setpoint position of the ramp

GENEIALON ...ttt 84
Reading out the status............cccccoiiieiiinnen. 29

Reading out the temperature of the controller

Reading out the voltage at the analog input..86

Reading out the warning of the Java program

... 59
RECOrAS ...ooviiiiiieee e 17
Reducing the speed........cccccceeiiiiiiiiiiiiieeee. 55
Resetting switch-on numerator...................... 54
Resetting the positionccccevviiieennnnnn. 28
Resetting the position errorcccceeeeeeee. 25
Reversing the polarity of the inputs and
OULPULS .o 32
Revolutions

setting the number ... 66
S
Save travel distancesccccoccveeiicieneenee 17
Saving @ recordcocceeeviiiiiiiiiiiee e 41
SCOPE MOAE ...ovveiieeeeieciiiieee e 82
Set the reverse clearance.............ccccocceeeenee 35
Setting analog mode............... 44, 46, 103, 105

Setting analog positioning mode44, 46, 103,
105

Setting automatic sending of the status 34
Setting baudrate of the controller 39
Setting CL quick test mode..... 44, 46, 103, 105
Setting CL test mode.............. 44, 46, 103, 105
Setting clock direction mode... 44, 46, 103, 104
Setting flag positioning mode . 44, 46, 103, 104
Setting HW reference mode ... 44, 46, 103, 105

Setting joystick mode.............. 44, 46, 103, 105
Setting positioning mode (old scheme)......... 43
Setting speed mode................. 43, 45, 102, 104
Setting the acceleration ramp...........ccccc....... 49
Setting the brake rampccccccvveeeennen. 49
Setting the change of direction 51
Setting the continuation record...................... 52

Setting the dead range for the joystick mode 53
Setting the debounce time for the inputs 32

Setting the denominator of the D component of

the cascading position controller 78
Setting the denominator of the D component of
the cascading speed controller.................... 72
Setting the denominator of the D component of
the position controller............cccevvvvvviiivvnnnnne. 75
Setting the denominator of the D component of
the speed controllerovvvvvvvviiviievnnnnnne, 69
Setting the denominator of the | component of

the cascading position controller 77
Setting the denominator of the | component of

the cascading speed controller..................... 71
Setting the denominator of the | component of

the position controller............c.ccccooiienen. 74
Setting the denominator of the | component of

the speed controllerccccoieiiiiiiiiieenn. 68
Setting the denominator of the P component of
the cascading position controller 76
Setting the denominator of the P component of
the cascading speed controller..................... 70
Setting the denominator of the P component of
the position controller..............evvvevivevirnnnnnne. 73
Setting the denominator of the P component of
the speed controllerccccceiiiiiiiiinnne 67
Setting the direction of rotation 50
Setting the encoder direction 24
Setting the error correction mode 23
Setting the filter for analog mode................... 53

Setting the | component of the current
controller at standstill (SMCP33/PD-4)......... 90

Setting the | component of the current
controller during the run (SMCP33/PD-4)..... 91

Setting the jerk for the acceleration 36
Setting the jerk for the braking ramp............. 36
Setting the limit switch behavior 21

Setting the limit switch typeccccceeee 22

\Y) Nanotec’

PLUG & DRIVE

Setting the maximum allowed following error62

Setting the maximum encoder deviation 25
Setting the maximum frequency.................... 48
Setting the maximum frequency 2................. 48
Setting the maximum jerk for the acceleration
... 36
Setting the maximum jerk for the braking ramp
... 36
Setting the maximum voltage for the analog
T [PR 54
Setting the minimum frequency..................... 47
Setting the minimum voltage for the analog
70T [P 54
Setting the motor addressccccccevvveeeenee 19
Setting the motor modeccccoeveiiiiienenns 20
Setting the motor pole pairs.............cccvveennee 64
Setting the number of increments 65
Setting the number of revolutions.................. 66
Setting the numerator of the D component of
the cascading position controller................... 78
Setting the numerator of the D component of
the cascading speed controller...................... 72
Setting the numerator of the D component of
the position controllercccccoiiiiieen. 75
Setting the numerator of the D component of
the speed controller..............oevvvvviieiiiivinnnnnnns 69
Setting the numerator of the | component of
the cascading position controller 77
Setting the numerator of the | component of
the cascading speed controller...................... 71
Setting the numerator of the | component of
the position controllerccccooceeiiiennne 74
Setting the numerator of the | component of
the speed controller ... 68
Setting the numerator of the P component of
the cascading position controller 76
Setting the numerator of the P component of
the cascading speed controller..................... 70
Setting the numerator of the P component of
the position controllervvvveiiiiieiennnnns 73
Setting the numerator of the P component of
the speed controller..........ccccceeveeiiiiiiiiieeenn.n. 67
Setting the outputs.......cccooiiiiiii 33

Setting the P component of the current
controller at standstill (SMCP33/PD-4).......... 89

Setting the P component of the current
controller during the run (SMCP33/PD-4)..... 89

Setting the phase current...........cccccooeeeeenns 18
Setting the phase current at standstill........... 18
Setting the positioning mode .. 43, 45, 102, 104

Setting the positioning mode (new scheme.. 45

Setting the quickstop rampccccceeeeeeins 50
Setting the ramp........cccccoiiiiiie 35
Setting the record for auto correction 23
Setting the record pause...........cocccevviieeeenns 52
Setting the repetitionscccoceiiiiienis 51
Setting the sample rate...........occcceeeviennn 83

Setting the scaling factor for speed-dependent
adjustment of the | component of the controller
during the run (SMCP33/PD-4)..................... 91

Setting the scaling factor for speed-dependent
adjustment of the P component of the
controller during the run (SMCP33/PD-4)..... 90

Setting the step anglecoooovvviiieennnennne 22
Setting the step mode..........cccooceeiiiiiinns 19
Setting the swing out time............cccooeeee 24
Setting the time for the maximum following

=T 5 o] PRSPPI 63
Setting the time for the tolerance window of the
limit POSItioNooii s 62
Setting the tolerance window for the limit
POSItION....cciiiieieiiee e 61
Setting the travel distanceccccccoeo. 46
Setting the wait time for switching off the brake
VOIAgE ..ooeeeie e 37, 38
Setting the wait time for switching off the motor
Current.......oooee 38
Setting the wait time for the motor movement
.. 38
Setting torque mode................ 44, 46, 103, 105
Settings closed l00p..........cceeeiiiiieeiiiiieeene 60

Speed controller

setting the denominator of the D component
... 69

setting the denominator of the | component
... 68

setting the denominator of the P component
... 67

setting the numerator of the D component 69

setting the numerator of the | component . 68

\Y) Nanotec’

PLUG & DRIVE

setting the numerator of the P component.67
Speed deviation

maximum time

maximum value

Starting the bootloader

Starting the motor ... 40
Stopping @ MOLON........vveeeeiiiiee e 40
T

Time for maximum speed deviation.............. 64

Travel distance, save........cccococeveiiiiveeieennnn.. 17

	About this manual
	Target group
	Information on SMCI33 and SMCI47-S
	Contents of the manual
	Please note!

	Command reference of the Nanotec firmware
	General information
	Command structure
	Controller command structure
	Controller response
	Examples
	CanOpen interface specification

	Long command format
	Use
	Long command structure
	Keywords
	Controller response
	Command for reading a parameter
	Command for changing a parameter
	Example

	Command overview
	Read command
	Function
	Command
	Example
	Firmware response
	Description

	Records
	Saving travel distances
	Saved settings per record

	General commands
	Setting the phase current
	Parameter
	Firmware response
	Description
	Reading out

	Setting the phase current at a standstill
	Parameter
	Firmware response
	Description
	Reading out

	Setting the step mode
	Parameter
	Firmware response
	Description
	Reading out

	Setting the motor address
	Parameter
	Firmware response
	Description
	Reading out

	Setting the motor mode
	Parameter
	Firmware response
	Description
	Reading out

	Setting the limit switch behavior
	Parameter
	Firmware response
	Description
	Reading out

	Setting the limit switch type
	Parameter
	Firmware response
	Description
	Reading out

	Setting the step angle
	Parameter
	Firmware response
	Description
	Reading out

	Setting the error correction mode
	Parameter
	Firmware response
	Description
	Reading out

	Setting the record for auto correction
	Parameter
	Firmware response
	Description
	Reading out

	Setting the encoder direction
	Parameter
	Firmware response
	Description
	Reading out

	Setting the settling time
	Parameter
	Firmware response
	Description
	Reading out

	Setting the maximum encoder deviation
	Parameter
	Firmware response
	Description
	Reading out

	Resetting the position error
	Parameter
	Firmware response
	Description

	Reading out the error memory
	Parameter
	Firmware response
	Description
	Reading out
	Error codes
	Meaning
	Controller status

	Reading out the encoder position
	Parameter
	Firmware response
	Description

	Reading out the position
	Parameter
	Firmware response
	Description

	Resetting the position
	Parameter
	Firmware response
	Description

	Request “Motor is referenced”
	Parameters
	Firmware response
	Description

	Reading out the motor address
	Parameter
	Firmware response
	Description

	Reading out the status
	Parameter
	Firmware response
	Description

	Reading out the firmware version
	Parameter
	Firmware response
	Description
	Example of a complete response

	Reading out the firmware version (old)
	Parameter
	Firmware response
	Description

	Masking and demasking the inputs
	Parameters
	Firmware response
	Description
	Reading out
	Examples

	Reversing the polarity of the inputs and outputs
	Parameters
	Firmware response
	Description
	Reading out

	Setting the debounce time for the inputs
	Parameters
	Firmware response
	Description
	Reading out

	Setting the outputs
	Parameters
	Firmware response
	Description
	Reading out

	Carrying out an EEPROM reset
	Parameters
	Firmware response
	Description

	Setting automatic sending of the status
	Parameter
	Firmware response
	Description
	Reading out

	Starting the bootloader
	Parameter
	Firmware response
	Description

	Setting the reverse clearance
	Parameter
	Firmware response
	Description
	Reading out

	Setting the ramp
	Parameters
	Firmware response
	Description
	Reading out

	Setting the maximum jerk for the acceleration ramp
	Parameters
	Firmware response
	Description
	Reading out
	Note

	Setting the maximum jerk for the braking ramp
	Parameter
	Firmware response
	Description
	Reading out
	Note

	Setting the wait time for switching off the brake voltage
	Parameters
	Firmware response
	Description
	Reading out

	Setting the wait time for the motor movement
	Parameters
	Firmware response
	Description
	Reading out

	Setting the wait time for switching off the motor current
	Parameters
	Firmware response
	Description
	Reading out

	Setting baudrate of the controller
	Parameters
	Firmware response
	Description
	Example
	Reading out

	Record commands
	Starting the motor
	Parameters
	Firmware response
	Description

	Stopping a motor
	Parameters
	Firmware response
	Description

	Loading a record from the EEPROM
	Parameter
	Firmware response
	Description

	Reading out the current record
	Parameters
	Firmware response
	Description
	Reading out
	Examples

	Saving a record
	Parameter
	Firmware response
	Description

	Setting positioning mode (old scheme)
	Parameters
	Firmware response
	Description
	Reading out

	Setting the positioning mode (new scheme)
	Parameters
	Firmware response
	Description
	Reading out

	Setting the travel distance
	Parameter
	Firmware response
	Description
	Reading out

	Setting the minimum frequency
	Parameter
	Firmware response
	Description
	Reading out

	Setting the maximum frequency
	Parameter
	Firmware response
	Description
	Reading out

	Setting the maximum frequency 2
	Parameter
	Firmware response
	Description
	Reading out

	Setting the acceleration ramp
	Parameters
	Firmware response
	Description
	Reading out

	Setting the brake ramp
	Parameters
	Firmware response
	Description
	Reading out

	Setting the quickstop ramp
	Parameters
	Firmware response
	Description
	Reading out

	Setting the direction of rotation
	Parameter
	Firmware response
	Description
	Reading out

	Setting the change of direction
	Parameter
	Firmware response
	Description
	Reading out

	Setting the repetitions
	Parameter
	Firmware response
	Description
	Reading out

	Setting the record pause
	Parameter
	Firmware response
	Description
	Reading out

	Setting the continuation record
	Parameter
	Firmware response
	Description
	Reading out

	Mode-specific commands
	Setting the dead range for the joystick mode
	Parameter
	Firmware response
	Description
	Reading out

	Setting the filter for the analog and joystick modes
	Parameter
	Firmware response
	Description
	Reading out

	Setting the minimum voltage for the analog mode
	Parameter
	Firmware response
	Description
	Reading out

	Setting the maximum voltage for the analog mode
	Parameter
	Firmware response
	Description
	Reading out

	Resetting switch-on numerator
	Parameters
	Firmware response
	Description
	Reading out

	Adjusting the time until the current reduction
	Parameters
	Firmware response
	Description
	Reading out

	Increasing the speed
	Parameter
	Firmware response
	Description

	Reducing the speed
	Parameter
	Firmware response
	Description

	Actuating the trigger
	Parameter
	Firmware response
	Description

	Commands for JAVA program
	Transferring a Java program to the controller
	Parameters
	Firmware response
	Description

	Starting a loaded Java program
	Parameters
	Firmware response
	Description

	Stopping the running Java program
	Parameters
	Firmware response
	Description

	Verifying loaded Java program
	Parameters
	Firmware response
	Description

	Automatically starting the Java program when switching on th
	Parameters
	Firmware response
	Description

	Reading out error of the Java program
	Parameters
	Firmware response
	Description

	Reading out the warning of the Java program
	Parameters
	Firmware response
	Description

	Closed loop settings
	Activating closed-loop mode
	Parameters
	Firmware response
	Description
	Important conditions
	Reading out

	Reading out the closed loop mode status
	Parameters
	Firmware response
	Description

	Setting the tolerance window for the limit position
	Parameters
	Firmware response
	Description
	Reading out

	Setting the time for the tolerance window of the limit posit
	Parameters
	Firmware response
	Description
	Reading out

	Setting the maximum allowed following error
	Parameters
	Firmware response
	Description
	Reading out

	Setting the time for the maximum following error
	Parameters
	Firmware response
	Description
	Reading out

	Maximum speed deviation
	Parameters
	Firmware response
	Description
	Reading out

	Time for maximum speed deviation
	Parameters
	Firmware response
	Description
	Reading out

	Setting the motor pole pairs
	Parameters
	Firmware response
	Description
	Reading out

	Setting the number of increments
	Parameters
	Firmware response
	Description
	Reading out

	Setting the number of revolutions
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the P component of the speed contro
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the P component of the speed cont
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the I component of the speed contro
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the I component of the speed cont
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the D component of the speed contro
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the D component of the speed cont
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the P component of the cascading sp
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the P component of the cascading
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the I component of the cascading sp
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the I component of the cascading
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the D component of the cascading sp
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the D component of the cascading
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the P component of the position con
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the P component of the position c
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the I component of the position con
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the I component of the position c
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the D component of the position con
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the D component of the position c
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the P component of the cascading po
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the P component of the cascading
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the I component of the cascading po
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the I component of the cascading
	Parameters
	Firmware response
	Description
	Reading out

	Setting the numerator of the D component of the cascading po
	Parameters
	Firmware response
	Description
	Reading out

	Setting the denominator of the D component of the cascading
	Parameters
	Firmware response
	Description
	Reading out

	Motor-dependent correction values determined by test runs fo
	General information
	Reading out the encoder/motor offset
	Parameters
	Firmware response
	Description

	Reading out the load angle of the motor
	Parameters
	Firmware response
	Description

	Reading out the correction values of the speed controller
	Parameters
	Firmware response
	Description

	Reading out the correction values of the current controller
	Parameters
	Firmware response
	Description

	Reading out the correction values of the position controller
	Parameters
	Firmware response
	Description

	Scope mode
	Integration of a scope
	Description
	Examples

	Setting the sample rate
	Parameters
	Description
	Reading out

	Reading out the setpoint position of the ramp generator
	Parameters
	Description

	Reading out the actual position of the encoder
	Parameters
	Description

	Reading out the setpoint current of the motor controller
	Parameters
	Description

	Reading out the actual voltage of the controller
	Parameters
	Description

	Reading out the digital inputs
	Parameters
	Description

	Reading out the voltage at the analog input
	Parameters
	Description

	Reading out the CAN bus load
	Parameters
	Description

	Reading out the controller temperature
	Parameters
	Description

	Reading out the following error
	Parameters
	Description

	Configuration of the current controller of the SMCP33 and PD
	Setting the P component of the current controller at standst
	Parameters
	Firmware response
	Description
	Reading out

	Setting the P component of the current controller during the
	Parameters
	Firmware response
	Description
	Reading out

	Setting the scaling factor for speed-dependent adjustment of
	Parameters
	Firmware response
	Description
	Reading out

	Setting the I component of the current controller at standst
	Parameters
	Firmware response
	Description
	Reading out

	Setting the I component of the current controller during the
	Parameters
	Firmware response
	Description
	Reading out

	Setting the scaling factor for speed-dependent adjustment of
	Parameters
	Firmware response
	Description
	Reading out

	Programming with Java (NanoJEasy)
	Overview
	About this chapter
	Restrictions
	Abbreviations used
	Preconditions
	Simultaneous communication over the serial interface

	Command overview
	Installing NanoJEasy
	General information
	Procedure

	Working with NanoJEasy
	Main window of NanoJEasy
	Screenshot
	Explanation of the areas

	Development process with NanoJEasy
	Development process
	Important instructions for programming
	Completing the command on entry
	Starting and ending the simulation

	Integrated commands
	Classes and functions
	Integrating a class
	Calling up functions
	Integrating an individual function
	class example{

	Classes and functions
	“comm” class
	comm.SendInt
	comm.SendLong

	“drive” class
	drive.StartDrive
	drive.StopDrive
	drive.SetMaxSpeed
	drive.GetMaxSpeed
	drive.SetMinSpeed
	drive.GetMinSpeed
	drive.SetAccelaration
	drive.GetAccelaration
	drive.SetTargetPos
	drive.GetTargetPos
	drive.SetDriveMode
	drive.GetDriveMode
	drive.SetMode
	drive.GetMode
	drive.SetCurrent
	drive.GetCurrent
	drive.SetCurrentReduction
	drive.GetCurrentReduction
	drive.GetStatus
	drive.SetDirection
	drive.GetDirection
	drive.GetEncoderPosition
	drive.GetDemandPosition
	drive.LoadDataSet

	“io” class
	io.SetLED
	io.SetDigitalOutput
	io.GetDigitalOutput
	io.GetDigitalInput
	io.GetAnalogInput

	“util” class
	util.GetMillis
	util.Sleep
	util.TestBit
	util.SetBit
	util.ClearBit

	Java programming examples
	AnalogExample.java
	DigitalExample.java
	TimerExample.java
	ConfigDriveExample.java
	DigitalOutput.java

	Manual translation and transfer of a program without NanoJEa
	Necessary tools
	Introduction
	Java SE
	ejvm_linker
	PD4 Utility
	ejvm_emulator

	Translating the program
	Linking and converting a program
	Overview
	Starting ejvm_linker.exe without debug function
	Starting ejvm_linker.exe with debug function
	Result

	Transferring the program to the controller
	PD4 utility dialog window
	Procedure

	Executing the program
	PD4 utility
	(JI ... Verifying loaded Java program
	(JA ... Starting a loaded Java program
	(JS ... Stopping the running Java program
	(JB ... Automatically starting the Java program when switching on the controller
	(JE ... Reading out error of the Java program
	(JW ... Reading out warning

	Possible Java error messages
	Meaning of the error messages

	Programming via the COM interface
	Overview
	About this chapter
	Operating systems and NanoPro versions
	Preconditions
	Programming environments

	Command overview
	Description of the functions
	Methods
	Calling up the status of the objects

	General functions
	Errorflag
	ErrorNumber
	ErrorMessageString
	SerialPorts
	SelectedPort
	Baud rate
	GetAvailableMotorAddresses
	MotorAddresse

	Status functions for older motors
	GetStatusByte
	IsMotorReady()
	IsAtReferencePosition()
	HasPositionError
	HasEndedTravelProfileAndStartInputStillActive
	IsPositionModeActive
	IsSpeedModeActive
	IsFlagPositionModeActive
	IsClockDirectionModeActive
	IsJoyStickModeActive
	IsAnalogModeActive
	IsTorqueModeActive

	Motor control functions for older motors
	ResetPositionError
	StartTravelProfile
	StopTravelProfile
	IncreaseFrequency
	DecreaseFrequency
	TriggerOn
	StoreRecord
	WriteCurrentReduction
	WritePhaseCurrent
	WriteFinalySendStatus
	WriteAnalogueMin
	WriteAnalogueMax
	WriteErrorCorrectionRecord
	WriteToleranceWidth
	WriteSwingOutTime
	WriteReverseEncoderRotatingDirection
	SetAddress
	SetReverseClearance
	ResetCounter
	WriteStartFrequency
	WriteRamp
	WriteNumberOfPasses
	WriteNormalFrequency
	WriteNextOperation
	WriteSteps
	WriteMaximumFrequency
	ReadChangeDirection
	WriteChangeDirection
	WriteBreak
	ReadRecord
	ReadAddress
	ReadCounter
	ReadStartFrequency
	ReadRamp
	ReadNumberOfPasses
	ReadNormalFrequency
	ReadNextOperation
	ReadSteps
	ReadMemory
	ReadMaximumFrequency
	ReadBreak
	ReadCurrentReduction
	ReadPhaseCurrent
	GetOperationMode
	WriteStepMode
	WriteInternalNormalRunBehavior
	WriteInternalReferenceRunBehavior
	WriteExternalSwitchType
	WriteExternalNormalRunBehavior
	WriteExternalReferenceRunBehavior
	WriteOperationType
	ReadOperationType
	WriteDirection
	ReadDirection
	ReadReverseClearance

	Status functions for newer motors
	GetNewStatus
	IsNewMotorReady
	IsAtNewReferencePosition
	HasNewPositionError
	HasNewEndedTravelProfileAndStartInputStillActive
	IsNewPositionModeActive
	IsNewSpeedModeActive
	IsNewFlagPositionModeActive
	IsNewClockDirectionModeActive
	IsNewNewJoyStickModeActive
	IsNewAnalogModeActive
	IsNewTorqueModeActive

	Motor control functions for newer motors
	SetNewSoftware
	ResetAllSettings
	GetNewVersion
	ResetNewPositionError
	SetNewSendStatusWhenCompleted
	GetNewSendStatusWhenCompleted
	GetNewPosition
	ResetNewPosition
	StartNewTravelProfile
	StopNewTravelProfile
	IncreaseNewFrequency
	DecreaseNewFrequency
	NewTriggerOn
	ChooseNewRecord
	SetNewRecord
	SetNewPlay
	GetNewPlay
	SetNewSoftwareFilter
	GetNewSoftwareFilter
	SetNewStepMode
	GetNewStepMode
	SetNewMotorAddress
	GetNewMotorAddress
	GetNewErrorAddress
	GetNewError
	SetNewEnableAutoCorrect
	SetNewSwingOutTime
	GetNewSwingOutTime
	SetNewNextRecord
	GetNewNextRecord
	SetNewOperationMode
	GetNewOperationMode
	SetNewPhaseCurrent
	GetNewPhaseCurrent
	SetNewCurrentReduction
	GetNewCurrentReduction
	SetNewLimitSwitchType
	GetNewLimitSwitchType
	SetNewReverseClearance
	GetNewReverseClearance
	SetNewMotorStepAngel
	GetNewMotorStepAngel
	SetNewAnalogueMin
	GetNewAnalogueMin
	SetNewAnalogueMax
	GetNewAnalogueMax
	SetNewAngelDeviationMax
	GetNewAngelDeviationMax
	SetNewPositionType
	GetNewPositionType
	SetNewSteps
	GetNewSteps
	SetNewStartFrequency
	GetNewStartFrequency
	SetNewMaxFrequency
	GetNewMaxFrequency
	SetNewMaxFrequency2
	GetNewMaxFrequency2
	NewSuppressResponse
	SetNewRamp
	GetNewRamp
	SetNewRotationMode
	GetNewRotationMode
	SetNewDirection
	GetNewDirection
	SetNewDirectionReverse
	GetNewDirectionReverse
	SetNewEncoderDirection
	GetNewEncoderDirection
	SetNewBreak
	GetNewBreak
	SetNewRepeat
	GetNewRepeat
	SetIO
	GetIO
	SetInputMask
	GetInputMask
	SetInputMaskEdge
	GetInputMaskEdge
	SetRampType
	GetRampType
	GetEncoderRotary
	SetBraleTA
	GetBrakeTA
	SetBrakeTB
	GetBrakeTB
	SetBrakeTC
	GetBrakeTC
	SetRotencInc
	GetRotencInc

	Programming examples
	Introduction
	OfficeExample
	VBAExample
	VBACommandsPD4IExample-2Motor
	ManagedC++CommandsPD4I
	UnManagedC++CommandsPD4I

