PD4-C/CB CANopen

Version 1.0.0

Fax +49 89 900 686-50

Kurzanleitung Original: de

Kapellenstraße 6

Nanotec Electronic GmbH & Co. KG Tel. +49 89 900 686-0

85622 Feldkirchen, Deutschland info@nanotec.de

Einleitung

Der PD4-C ist ein bürstenloser Motor mit integrierter Steuerung. Durch den integrierten Absolut-Encoder ist der sofortige Betrieb im Closed Loop-Modus ohne Referenzfahrt möglich.

Dieses Dokument beschreibt die Montage und Inbetriebnahme des Motors. Die ausführliche Dokumentation zum Produkt finden Sie auf der Nanotec-Homepage www.nanotec.de. Diese Kurzanleitung ersetzt nicht das technische Handbuch des Produkts.

Urheberrecht

Copyright © 2013 – 2018 Nanotec® Electronic GmbH & Co. KG. Alle Rechte

Bestimmungsgemäßer Gebrauch

Der PD4-C Motor mit integrierter Steuerung ist für den Einsatz unter den freigegebenen Umgebungsbedingungen konzipiert.

Ein anderer Gebrauch gilt als nicht bestimmungsgemäß.

Hinweis

Änderungen oder Umbauten des Produktes sind nicht zulässig.

Gewährleistung und Haftungsausschluss

Nanotec produziert Komponententeile, die ihren Einsatz in vielfältigen Industrieanwendungen finden. Die Auswahl und Anwendung von Nanotec-Produkten liegt im Verantwortungsbereich des Anlagenkonstrukteurs bzw. Endnutzers. Nanotec übernimmt keinerlei Verantwortung für die Integration der Produkte in das Endsystem.

Unter keinen Umständen darf ein Nanotec-Produkt als Sicherheitssteuerung in ein Produkt oder eine Konstruktion integriert werden. Alle Produkte, in denen ein von Nanotec hergestelltes Komponententeil enthalten ist, müssen bei der Übergabe an den Endnutzer entsprechende Warnhinweise und Anweisungen für eine sichere Verwendung und einen sicheren Betrieb aufweisen. Alle von Nanotec bereitgestellten Warnhinweise müssen unmittelbar an den Endnutzer weitergegeben werden.

Es gelten unsere Allgemeinen Geschäftsbedingungen: de.nanotec.com/ service/agb/.

Fachkräfte

Nur Fachkräfte dürfen das Gerät installieren, programmieren und in Betrieb

- Personen, die eine entsprechende Ausbildung und Erfahrung im Umgang mit Motoren und deren Steuerung haben.
- Personen, die den Inhalt dieses technischen Handbuchs kennen und
- Personen, die die geltenden Vorschriften kennen.

EU-Richtlinien zur Produktsicherheit

Folgende EU-Richtlinien wurden beachtet:

- RoHS-Richtlinie (2011/65/EU, 2015/863/EU)
- EMV-Richtlinie (2014/30/EU)

Mitgeltende Vorschriften

Neben diesem technischen Handbuch sind folgende Vorschriften zu beachten:

- Unfallverhütungsvorschriften
- örtliche Vorschriften zur Arbeitssicherheit

Sicherheits- und Warnhinweise

Hinweis

- Beschädigung der Steuerung.
- Ein Wechsel der Verdrahtung im Betrieb kann die Steuerung
- Ändern Sie die Verdrahtung nur im spannungsfreien Zustand und warten Sie nach dem Abschalten, bis sich die Kondensatoren. entladen haben

Hinweis

- Störung der Steuerung durch Erregerspannung des Motors.
- Während des Betriebs können Spannungsspitzen die Steuerung
- Verbauen Sie geeignete Schaltungen (z. B. Stützkondensator), die Spannungsspitzen abbauen.

Hinweis

- Ein Verpolungsschutz ist nicht gegeben.
- Bei Verpolung entsteht ein Kurzschluss zwischen Versorgungsspannung und GND (Masse) über die
- Installieren Sie eine Leitungsschutzeinrichtung (Sicherung) in der Zuleitung

Hinweis

- Das Gerät enthält Bauteile, die empfindlich gegen elektrostatische Entladung sind.
- Unsachgemäßer Umgang kann das Gerät beschädigen.
- Beachten Sie die Grundprinzipien des ESD-Schutzes beim Umgang mit dem Gerät.

Technische Daten und Anschlussbelegung

Umgebungsbedingungen

Umgebungsbedingung	Wert
Schutzklasse	IP20
Umgebungstemperatur (Betrieb)	-10 +40°C
Luftfeuchtigkeit (nicht kondensierend)	0 85%
Aufstellhöhe über NN (ohne Leistungsbeschränkung)	1500 m
Umgebungstemperatur (Lagerung)	-25 +85°C

Elektrische Eigenschaften und technische Daten

Technische Daten Motor

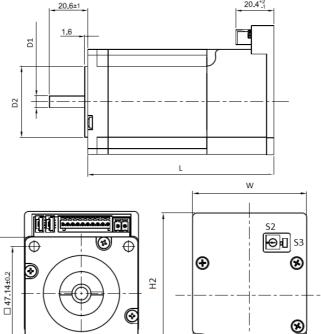
	PD4-C	PD4-CB
Art	Hochpoliger DC-Servo (Schrittmotor)	Niedrigpoliger DC-Servo (BLDC)
Betriebsspannung	12 V bis 48 V DC +/-5%	12 V bis 24 V DC +/-5%
Nennstrom	4,2 A eff.	8 A eff.
Spitzenstrom für 1s	max. 6,3 A eff.	max. 20 A eff.

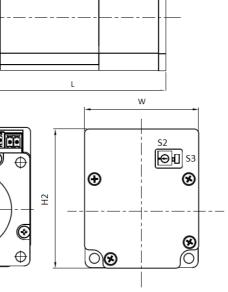
Technische Daten

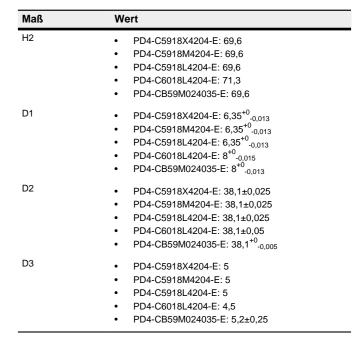
Eigenschaft	Beschreibung/Wert
Betriebsmodi	Profile Position Mode, Profile Velocity Mode, Profile Torque Mode, Velocity Mode, Homing Mode, Interpolated Position Mode, Cyclic Sync Position Mode, Cyclic Sync Velocity Mode, Cyclic Synchronous Torque Mode, Takt-Richtung-Modus
Sollwertvorgabe/ Programmierung	CANopen, Takt-Richtung, Analog, NanoJ-Programm
Eingänge	4 Digitaleingänge (+5 V / +24 V), einzeln per Software umschaltbar, Werkseinstellung: 5 V
	1 analoger Eingang, 10 Bit Auflösung, 0 - 10 V
Ausgänge	2 Ausgänge, (Open Drain, 0 schaltend, max. 24 V und 100 mA)
Integrierter Encoder	magnetischer Singleturn-Absolut-Encoder, 1024 Impulse/Umdrehung

Eigenschaft	Beschreibung/Wert		
Schutzschaltung	Über- und Unterspannungsschutz		
	Übertemperaturschutz (> 75° Celsius auf der Leistungsplatine)		
	Verpolungsschutz: bei Verpolung Kurzschluss zwischen Versorgungsspannung und GND über Leistungsdiode, daher ist eine Leitungsschutzeinrichtung (Sicherung) in Zuleitung nötig. Die Werte der Sicherung ist abhängig von der Applikation und muss		
	 größer als die maximale Stromaufnahme der Steuerung kleiner als der maximale Strom der Spannungsversorgung ausgelegt werden. 		
	Falls der Sicherungswert sehr nahe an der maximalen Stromaufnahme der Steuerung liegt, sollte eine Auslösecharakteristik mittel/träge eingesetzt werden.		

Maßzeichnungen


Alle Maße sind in Millimetern.


/4-ØD3


Wert

Maß

W

Übertemperaturschutz

Ab einer Temperatur von ca. 75 °C auf der Leistungsplatine (entspricht 65 - 72 °C außen am hinteren Deckel) wird das Leistungsteil der Steuerung abgeschaltet und das Fehlerbit gesetzt. Nach Abkühlung und dem Bestätigen des Fehlers funktioniert die Steuerung wieder normal.

LED-Signalisierung

Betriebs-LED

Normaler Betrieb

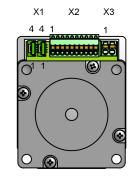
Im normalen Betrieb blinkt die grüne Betriebs-LED einmal in der Sekunde sehr kurz auf.

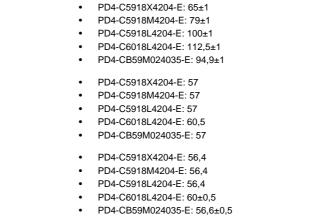
Fehlerfall

Liegt ein Fehler vor, signalisiert die LED eine Fehlernummer.

Folgende Tabelle zeigt die Bedeutung der Fehlernummern.

Blinktakt	Fehler
1	Allgemein
2	Spannung
3	Temperatur
4	Überstrom
5	Regler
6	Watchdog-Reset




Hinweis

Für jeden aufgetretenen Fehler wird im Objekt 1003_h ein genauerer Fehlercode hinterleat

Anschlüsse

Pin 1 ist markiert.

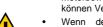
Anachlus	Funktion	Pin Rologung / Roschroibung			
Anschluss	runktion	Pin-Belegung / Beschreibung			
X1	CANopen IN/ OUT und externe Logikversorgung Die Kontakte beider Stecker sind miteinander verbunden.	externe Lo	externe Logikversorgung für die Kommunikation) CAN+ CAN-		
X2	Digitale und analoge Ein- und Ausgänge Schaltschwellen für digitale Eingänge 1 - 4: 5 V (Werkseinstellung): Ein: >3 V; Aus: <1 V 24 V: Ein: >16 V; Aus: <8 V	 12V-AusgamA Digitaler Amax 24 V/1 Digitaler Esignal, um: Digitaler Esignal, um: Digitaler Eumschaltbank Richtungs- Digitaler Eumschaltbank Richtungs- Digitaler Eumschaltbank Richtungs- Meighalt Beimach Richtungs- Migitaler Eumschaltbank Richtungs- Migitaler Eumschaltbank Richtungs- 	Analoger Eingang: 10 Bit, 0-10 V 12V-Ausgang: +12 V DC, max. 100 mA Digitaler Ausgang 1: Open-Drain, max 24 V/100 mA Digitaler Ausgang 2: Open-Drain, max 24 V/100 mA Digitaler Eingang 1; 5 V / 24 V Signal, umschaltbar mit Objekt 3240h Digitaler Eingang 2; 5 V / 24 V Signal, umschaltbar mit Objekt 3240h Digitaler Eingang 3: 5 V / 24 V, umschaltbar mit Objekt 3240h, max. 1 MHz; Richtungseingang im Takt-Richtungs-Modus Digitaler Eingang 4: 5 V / 24 V, umschaltbar mit Objekt 3240h, max. 1 MHz; Takteingang im Takt-Richtungs-Modus		
Х3	Versorgung PD4-C: 12-48 V DC ±5% PD4-CB: 12-24 V DC±5%	1. +UB 2. GND			
\$2	Hex-Codierschalter, zum Einstellen der Node-ID und Baudrate	Wert des I Schalters	Node-ID	Baudrate	
			Objekt 2009 _h	1MBd	
			Wert des Schalters	1MBd	
			Objekt 2009 _h	Objekt 2005 _h	
			(Wert des Schalters)-8	Objekt 2005 _h	
S3	DIP-Schalter für 120 Ω Terminierung für den CAN-Bus.	OFF: Der CAN- ON (oben): Der			

Hinweis

- EMV: Bei einer DC-Stromversorgungsleitung mit einer Länge von >30 m oder Verwendung des Motors an einem DC-Bus sind zusätzliche Entstör- und Schutzmaßnahmen notwendig.
- Ein EMI-Filter ist in die DC-Zuleitung mit möglichst geringem Abstand zur Steuerung/Motor einzufügen.
- Lange Daten- oder Versorgungsleitungen sind durch Ferrite zu führen.

Inbetriebnahme

Die Software *Plug & Drive Studio* bietet Ihnen eine Möglichkeit, die Konfiguration vorzunehmen und die Motorparameter an Ihre Applikation anzupassen. Weiterführende Informationen finden Sie im Dokument *Plug & Drive Studio: Quick Start Guide* auf **www.nanotec.de**.


Beachten Sie folgende Hinweise:

VORSICHT

- Bewegte Teile können zu Handverletzungen führen.
- Wenn Sie im laufenden Betrieb bewegte Teile anfassen, kann dies zu Handverletzungen führen.
- Greifen Sie während des Betriebs nicht nach bewegten Teilen. Warten Sie nach dem Abschalten, bis alle Bewegungen beendet sind.

VORSICHT

- Motorbewegung sind im freistehenden Betrieb unkontrolliert und können Verletzungen hervorrufen.
- Wenn der Motor unbefestigt ist, kann der Motor z.
 B. herunterfallen. Das kann zu Fußverletzungen oder zu Beschädigungen am Motor führen.
- Wenn Sie den Motor frei stehend betreiben, beobachten Sie den Motor, schalten Sie ihn bei Gefahr sofort ab und achten Sie darauf, dass der Motor nicht herunterfallen kann.

VORSICHT

- Bewegte Teile können Haare und lose Kleidung erfassen.
- Im laufenden Betrieb können bewegte Teil Haare oder lose Kleidung erfasst werden, dies kann zu Verletzungen führen.
- Bei langen Haaren tragen Sie ein Haarnetz oder andere geeignete Schutzmaßnahmen, wenn Sie in dem Bereich bewegter Teile sind. Arbeiten Sie nicht mit loser Kleidung oder Krawatten in der Nähe bewegter Teile.

VORSICHT

- Überhitzungs- oder Brandgefahr bei unzureichender Kühlung.
- Falls die Kühlung nicht ausreichend ist oder die Umgebungstemperatur zu hoch ist, besteht Überhitzungs- oder Brandgefahr.
- Achten Sie beim Einsatz darauf, dass die Kühlung und die Umgebungsbedingungen gewährleistet sind.

Hinweis

- EMV: Stromführende Leitungen insbesondere um Versorgungs- und Motorenleitungen – erzeugen elektromagnetische Wechselfelder.
- Diese k\u00f6nnen den Motor und andere Ger\u00e4te st\u00f6ren. Nanotec empfiehlt folgende Ma\u00dfnahmen:

- Geschirmte Leitungen verwenden und den Leitungsschirm beidseitig auf kurzem Weg erden.
- Kabel mit paarweise verdrillten Adern verwenden.
 Stromversorgungs- und Motorleitungen so kurz wie möglich
- Motorgehäuse großflächig auf kurzem Weg erden.
- Versorgungs-, Motor- und Steuerleitungen r\u00e4umlich getrennt verlegen.

Kommunikation über CANopen aufbauen

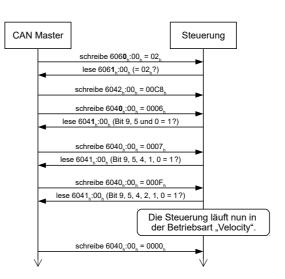
- Verbinden Sie den CANopen-Master mit der Steuerung über die CAN- und CAN+ Leitungen. Überprüfen Sie den Anschluss von Ihrem CAN-GND und dass der notwendige 120 Ohm Terminierungswiderstand zwischen CAN+ und CAN- vorhanden ist.
- 2. Versorgen Sie die Steuerung mit Spannung.

Hinweis

Wenn Sie, anstatt der Hauptversorgung, die Logikversorgung verwenden möchten, müssen Sie das Bit 0 in **4013**_h:01_h setzen und dieses Objekt speichern (1010_h:03_h auf "65766173_h" setzen).

3. Ändern Sie ggf. die Konfigurationswerte.

Ab Werk ist die Steuerung auf Node-ID 1, Baudrate 1 MBaud eingestellt.


Das Statusword (6041 $_{h}$) wurde ausgelesen, Sie erhalten diese Antwort: 4B 41 60 00 XX XX 00 00.

Testlauf

Beispielhaft wird der Betriebsmodus Velocity angewendet.

Die Werte werden von Ihrem *CANopen-Master* an die Steuerung übertragen. Dabei sollte der *Master* nach jeder Übertragung über Status-Objekte der Steuerung die erfolgreiche Parametrierung überprüfen.

- Wählen Sie den Modus Velocity, indem Sie das Objekt 6060_h (Modes Of Operation) auf den Wert "2" setzen.
- 2. Schreiben Sie die gewünschte Drehzahl in 6042_h.
- Versetzen Sie die Power state machine in den Zustand Operation enabled.
 Folgender Ablauf startet den Velocity Modus, der Motor dreht dabei mit 200

4. Um den Motor zu stoppen, setzen Sie das Controlword (6040h) auf "0".