

Technisches Handbuch Version: 1.0.0

Technisches Handbuch N5

Feldbus: Modbus RTU

Zur Benutzung mit folgenden Varianten:

N5-1-5, N5-2-5

Inhalt

Einleitung	
Sicherheits- und Warnhinweise	11
Technische Daten und Anschlussbelegung	12
3.2 Maßzeichnungen	13
·	
3.6 Anschlussbelegung	17
Inbetriebnahme	27
4.1 Konfiguration über Ethernet	27
4.6 Testlauf	37
Generelle Konzepte	39
5.2 CiA 402 Power State Machine	43
5.2 CiA 402 Power State Machine5.3 Benutzerdefinierte Einheiten	
5.3 Benutzerdefinierte Einheiten5.4 Begrenzung des Bewegungsbereichs	48 53
5.3 Benutzerdefinierte Einheiten	48 53
5.3 Benutzerdefinierte Einheiten	
5.3 Benutzerdefinierte Einheiten	53 53 53
5.3 Benutzerdefinierte Einheiten	
5.3 Benutzerdefinierte Einheiten 5.4 Begrenzung des Bewegungsbereichs 5.5 Zykluszeiten 6.1 Profile Position 6.2 Velocity	
5.3 Benutzerdefinierte Einheiten 5.4 Begrenzung des Bewegungsbereichs 5.5 Zykluszeiten 6.1 Profile Position 6.2 Velocity 6.3 Profile Velocity	
5.3 Benutzerdefinierte Einheiten 5.4 Begrenzung des Bewegungsbereichs 5.5 Zykluszeiten 6.1 Profile Position 6.2 Velocity	
5.3 Benutzerdefinierte Einheiten 5.4 Begrenzung des Bewegungsbereichs 5.5 Zykluszeiten 6.1 Profile Position 6.2 Velocity 6.3 Profile Velocity 6.4 Profile Torque	
2	1.1 Versionshinweise. 1.2 Urheberrecht, Kennzeichnung und Kontakt. 1.3 Bestimmungsgemäßer Gebrauch. 1.4 Gewährleistung und Haftungsausschluss. 1.5 Fachkräfte

	6.8 Cyclic Synchronous Velocity	
	6.9 Cyclic Synchronous Torque	
	6.10 Takt-Richtungs-Modus	
	6.11 Auto-Setup	85
7	Spezielle Funktionen	87
•	7.1 Digitale Ein- und Ausgänge	
	7.2 Automatische Bremsensteuerung	
	7.3 I ² t Motor-Überlastungsschutz	
	7.4 Objekte speichern	
0	Modbuo DTII	106
0	Modbus RTU	
	8.1 RS-485	
	8.2 Modbus Modicon-Notation bei SPS	
	8.3 Allgemeines	
	8.4 Kommunikationseinstellungen	
	8.5 Funktionscodes	
	8.6 Funktioncode-Beschreibungen	
	8.7 Prozessdatenobjekte (PDO)	
	8.8 NanoJ-Objekte	132
9	Programmierung mit NanoJ	133
	9.1 NanoJ-Programm	
	9.2 IVIAPPING IITI IVANOJ-PROGRAMM	
	9.2 Mapping im NanoJ-Programm	
1	9.3 Systemcalls im NanoJ-Programm O Objektverzeichnis Beschreibung	138
1	9.3 Systemcalls im NanoJ-Programm	138
1	9.3 Systemcalls im NanoJ-Programm	138140140
1	9.3 Systemcalls im NanoJ-Programm O Objektverzeichnis Beschreibung 10.1 Übersicht 10.2 Aufbau der Objektbeschreibung 10.3 Objektbeschreibung	138140140140140
1	9.3 Systemcalls im NanoJ-Programm O Objektverzeichnis Beschreibung 10.1 Übersicht 10.2 Aufbau der Objektbeschreibung 10.3 Objektbeschreibung 10.4 Wertebeschreibung	138140140140140
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht	138140140140140140142
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht 10.2 Aufbau der Objektbeschreibung 10.3 Objektbeschreibung 10.4 Wertebeschreibung 10.5 Beschreibung 1000h Device Type	138140140140140140142143
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht 10.2 Aufbau der Objektbeschreibung 10.3 Objektbeschreibung 10.4 Wertebeschreibung 10.5 Beschreibung 1000h Device Type 1001h Error Register 1003h Pre-defined Error Field	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht. 10.2 Aufbau der Objektbeschreibung. 10.3 Objektbeschreibung. 10.4 Wertebeschreibung. 10.5 Beschreibung. 1000h Device Type. 1001h Error Register. 1003h Pre-defined Error Field. 1008h Manufacturer Device Name.	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht. 10.2 Aufbau der Objektbeschreibung. 10.3 Objektbeschreibung. 10.4 Wertebeschreibung. 10.5 Beschreibung. 1000h Device Type. 1001h Error Register. 1003h Pre-defined Error Field. 1008h Manufacturer Device Name. 1009h Manufacturer Hardware Version.	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht 10.2 Aufbau der Objektbeschreibung 10.3 Objektbeschreibung 10.4 Wertebeschreibung 10.5 Beschreibung 1000h Device Type 1001h Error Register 1003h Pre-defined Error Field 1008h Manufacturer Device Name 1009h Manufacturer Hardware Version 100Ah Manufacturer Software Version	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht. 10.2 Aufbau der Objektbeschreibung. 10.3 Objektbeschreibung. 10.4 Wertebeschreibung. 10.5 Beschreibung. 1000h Device Type. 1001h Error Register. 1003h Pre-defined Error Field. 1008h Manufacturer Device Name. 1009h Manufacturer Hardware Version. 100Ah Manufacturer Software Version. 1010h Store Parameters. 1011h Restore Default Parameters.	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht. 10.2 Aufbau der Objektbeschreibung. 10.3 Objektbeschreibung. 10.4 Wertebeschreibung. 10.5 Beschreibung. 1000h Device Type. 1001h Error Register. 1003h Pre-defined Error Field. 1008h Manufacturer Device Name. 1009h Manufacturer Hardware Version. 100Ah Manufacturer Software Version. 1010h Store Parameters. 1011h Restore Default Parameters. 1018h Identity Object.	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht. 10.2 Aufbau der Objektbeschreibung. 10.3 Objektbeschreibung. 10.4 Wertebeschreibung. 10.5 Beschreibung. 1000h Device Type. 1001h Error Register. 1003h Pre-defined Error Field. 1008h Manufacturer Device Name. 1009h Manufacturer Hardware Version. 100Ah Manufacturer Software Version. 1010h Store Parameters. 1011h Restore Default Parameters. 1018h Identity Object. 1020h Verify Configuration. 1F50h Program Data.	
1	9.3 Systemcalls im NanoJ-Programm. 0 Objektverzeichnis Beschreibung. 10.1 Übersicht. 10.2 Aufbau der Objektbeschreibung. 10.3 Objektbeschreibung. 10.4 Wertebeschreibung. 10.5 Beschreibung. 1000h Device Type. 1001h Error Register. 1003h Pre-defined Error Field. 1008h Manufacturer Device Name. 1009h Manufacturer Hardware Version. 100Ah Manufacturer Software Version. 1010h Store Parameters. 1011h Restore Default Parameters. 1018h Identity Object. 1020h Verify Configuration. 1F50h Program Data. 1F51h Program Control.	
1	9.3 Systemcalls im NanoJ-Programm. 10.1 Übersicht	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht	
1	9.3 Systemcalls im NanoJ-Programm. O Objektverzeichnis Beschreibung. 10.1 Übersicht	
11	9.3 Systemcalls im NanoJ-Programm. 0 Objektverzeichnis Beschreibung. 10.1 Übersicht. 10.2 Aufbau der Objektbeschreibung. 10.3 Objektbeschreibung. 10.4 Wertebeschreibung. 10.5 Beschreibung. 100h Device Type. 1001h Error Register. 1003h Pre-defined Error Field. 1008h Manufacturer Device Name. 1009h Manufacturer Hardware Version. 100Ah Manufacturer Software Version. 1010h Store Parameters. 1011h Restore Default Parameters. 1018h Identity Object. 1020h Verify Configuration. 1F50h Program Data. 1F51h Program Control. 1F57h Program Status. 200Fh IEEE 802 MAC Address. 2010h IP-Configuration. 2011h Static-IPv4-Address.	
11	9.3 Systemcalls im NanoJ-Programm. 0 Objektverzeichnis Beschreibung. 10.1 Übersicht. 10.2 Aufbau der Objektbeschreibung. 10.3 Objektbeschreibung. 10.4 Wertebeschreibung. 10.5 Beschreibung. 1000h Device Type. 1001h Error Register. 1003h Pre-defined Error Field. 1008h Manufacturer Device Name. 1009h Manufacturer Hardware Version. 100Ah Manufacturer Software Version. 1010h Store Parameters. 1011h Restore Default Parameters. 1011h Restore Default Parameters. 1012h Verify Configuration. 1F50h Program Data. 1F51h Program Control. 1F57h Program Status. 200Fh IEEE 802 MAC Address. 2010h IP-Configuration. 2011h Static-IPv4-Address. 2012h Static-IPv4-Address.	
11	9.3 Systemcalls im NanoJ-Programm. 0 Objektverzeichnis Beschreibung. 10.1 Übersicht	
11	9.3 Systemcalls im NanoJ-Programm. 0 Objektverzeichnis Beschreibung. 10.1 Übersicht	
1(9.3 Systemcalls im NanoJ-Programm. 0 Objektverzeichnis Beschreibung. 10.1 Übersicht	
10	9.3 Systemcalls im NanoJ-Programm. 10 Objektverzeichnis Beschreibung. 10.1 Übersicht. 10.2 Aufbau der Objektbeschreibung. 10.3 Objektbeschreibung. 10.4 Wertebeschreibung. 10.5 Beschreibung. 1000h Device Type. 1001h Error Register. 1003h Pre-defined Error Field. 1008h Manufacturer Device Name. 1009h Manufacturer Software Version. 1010h Store Parameters. 1011h Restore Default Parameters. 1018h Identity Object. 1020h Verify Configuration. 1F50h Program Data. 1F51h Program Control. 1F57h Program Status. 200Fh IEEE 802 MAC Address. 2010h IP-Configuration. 2011h Static-IPv4-Address. 2012h Static-IPv4-Gateway-Address. 2013h Static-IPv4-Gateway-Address. 2016h Current-IPv4-Gateway-Address.	
11	9.3 Systemcalls im NanoJ-Programm. 0 Objektverzeichnis Beschreibung. 10.1 Übersicht	

	MODBUS RTU Stop Bits	
	MODBUS RTU Parity	
2030h	Pole Pair Count	173
2031h	Maximum Current	173
2034h	Upper Voltage Warning Level	174
	Lower Voltage Warning Level	
	Open Loop Current Reduction Idle Time	
	Open Loop Current Reduction Value/factor	
	Brake Controller Timing	
	Motor Currents	
	Homing On Block Configuration	
	12t Parameters	
	Torque Window	
	Torque Window Time Out	
	Max Slippage Time Out	
	Limit Switch Tolerance Band	
	Clock Direction Multiplier	
	Clock Direction Divider	
	Encoder Configuration	
	Absolute Sensor Boot Value (in User Units)	
	Clock Direction Or Clockwise/Counter Clockwise Mode	
	Bootup Delay	
	Fieldbus Module Availability	
	Fieldbus Module Control	
	Fieldbus Module Status	
	NanoJ Control	
	NanoJ Status	
	NanoJ Error Code	
	Uptime Seconds	
	NanoJ Input Data Selection	
	NanoJ Output Data Selection	
	NanoJ In/output Data Selection	
	NanoJ Inputs	
	NanoJ Init Parameters	
	NanoJ Outputs	
	NanoJ Debug Output	
	Customer Storage Area	
	Bootloader And Reboot Settings	
	Motor Drive Submode Select	
	Feedback Selection	
	Feedback Mapping	
	Motor Drive Parameter Set	
	Motor Drive Flags	
	Analog Inputs	
	Analogue Inputs Control	
	Analogue Inputs Switches	
	Digital Inputs Control	
	Digital Input Routing	
	Digital Input Homing Capture	
	Digital Outputs Control	
	Digital Output Routing	
	Read Analogue Input	
	Analogue Input Offset	
	Analogue Input Pre-scaling	
	Feedback Hall	
	Feedback Incremental A/B/I 1	
	MODBUS Rx PDO Mapping	
	MODBUS Tx PDO Mapping	
3/UUN	Deviation Error Option Code	245

4012h HW Information	
4013h HW Configuration	246
4014h Operating Conditions	247
4040h Drive Serial Number	249
4041h Device Id	250
603Fh Error Code	250
6040h Controlword	251
6041h Statusword	
6042h VI Target Velocity	
6043h VI Velocity Demand	
6044h VI Velocity Actual Value	
6046h VI Velocity Min Max Amount	
6048h VI Velocity Acceleration	
6049h VI Velocity Deceleration	
604Ah VI Velocity Quick Stop	
604Ch VI Dimension Factor	
605Ah Quick Stop Option Code	
605Bh Shutdown Option Code	
605Ch Disable Option Code	
605Dh Halt Option Code	
·	
605Eh Fault Option Code	
6060h Modes Of Operation	
6061h Modes Of Operation Display	
6062h Position Demand Value	
6063h Position Actual Internal Value	
6064h Position Actual Value	
6065h Following Error Window	
6066h Following Error Time Out	
6067h Position Window	
6068h Position Window Time	
606Bh Velocity Demand Value	
606Ch Velocity Actual Value	269
606Dh Velocity Window	
606Eh Velocity Window Time	
6071h Target Torque	
6072h Max Torque	271
6074h Torque Demand	272
6075h Motor Rated Current	272
6077h Torque Actual Value	272
607Ah Target Position	
607Bh Position Range Limit	
607Ch Home Offset	
607Dh Software Position Limit	
607Eh Polarity	
607Fh Max Profile Velocity	
6080h Max Motor Speed	
6081h Profile Velocity	
6082h End Velocity	
6083h Profile Acceleration	
6084h Profile Deceleration	
6085h Quick Stop Deceleration	
6086h Motion Profile Type	
6087h Torque Slope	
608Fh Position Encoder Resolution	
6090h Velocity Encoder Resolution	
6091h Gear Ratio	
6092h Feed Constant	
6096h Velocity Factor	
6097h Acceleration Factor	287

6098	Bh Homing Method	288
6099	9h Homing Speed	288
609 <i>F</i>	Ah Homing Acceleration	289
60A2	2h Jerk Factor	290
60A4	4h Profile Jerk	291
60A8	8h SI Unit Position	293
60A9	9h SI Unit Velocity	293
60B0	Oh Position Offset	294
60B ²	1h Velocity Offset	294
60B2	2h Torque Offset	295
60C	1h Interpolation Data Record	295
60C2	2h Interpolation Time Period	296
60C4	4h Interpolation Data Configuration	298
60C	5h Max Acceleration	300
60C6	6h Max Deceleration	300
60E4	4h Additional Position Actual Value	301
60E	5h Additional Velocity Actual Value	302
60E6	6h Additional Position Encoder Resolution - Encoder Increments	303
	8h Additional Gear Ratio - Motor Shaft Revolutions	
60E9	9h Additional Feed Constant - Feed	305
60E	Bh Additional Position Encoder Resolution - Motor Revolutions	306
60EI	Dh Additional Gear Ratio - Driving Shaft Revolutions	307
60E	Eh Additional Feed Constant - Driving Shaft Revolutions	308
60F2	2h Positioning Option Code	309
60F4	4h Following Error Actual Value	311
60F8	Bh Max Slippage	312
60F	Ah Control Effort	312
60F0	Ch Position Demand Internal Value	313
60F	Dh Digital Inputs	313
60FE	Eh Digital Outputs	314
60FF	Fh Target Velocity	315
6502	2h Supported Drive Modes	316
6503	3h Drive Catalogue Number	317
6505	5h Http Drive Catalogue Address	317
	opyrights	
	Einführung	
11.2	AES	318
11.3	MD5	318
	ulP	
	DHCP	
	CMSIS DSP Software Library	
11.7	FatFs	319
11.8	Protothreads	320
11.9	w P	320

1 Einleitung

Die *N5* ist eine Steuerung für den *Open Loop-* oder *Closed Loop-*Betrieb von Schrittmotoren und den *Closed Loop-*Betrieb von BLDC- Motoren.

Dieses Handbuch beschreibt die Funktionen der Steuerung und die verfügbaren Betriebsmodi. Weiterhin wird gezeigt, wie Sie die Steuerung über die Kommunikationsschnittstelle ansprechen und programmieren können.

Weitere Informationen zum Gerät finden Sie auf der Nanotec Homepage www.nanotec.de.

1.1 Versionshinweise

Version Handbuch	Datum	Änderungen	Version Firmware	Version Hardware
1.0.0	06/2018	erste Veröffentlichung	FIR-v1748	W007

1.2 Urheberrecht, Kennzeichnung und Kontakt

Copyright © 2013 – 2018 Nanotec Electronic GmbH & Co. KG. Alle Rechte vorbehalten.

Nanotec Electronic GmbH & Co. KG

Kapellenstraße 6

85622 Feldkirchen

Deutschland

Tel.+49 89 900 686-0

Fax +49 89 900 686-50

www.nanotec.de

1.3 Bestimmungsgemäßer Gebrauch

Die *N5 Steuerung* dient der Steuerung von Schritt- und BLDC-Motoren und ist für den Einsatz unter den freigegebenen **Umgebungsbedingungen** konzipiert.

Ein anderer Gebrauch gilt als nicht bestimmungsgemäß.

Hinweis

Änderungen oder Umbauten der Steuerung sind nicht zulässig.

1.4 Gewährleistung und Haftungsausschluss

Nanotec produziert Komponententeile, die ihren Einsatz in vielfältigen Industrieanwendungen finden. Die Auswahl und Anwendung von Nanotec-Produkten liegt im Verantwortungsbereich des

Anlagenkonstrukteurs bzw. Endnutzers. Nanotec übernimmt keinerlei Verantwortung für die Integration der Produkte in das Endsystem.

Unter keinen Umständen darf ein Nanotec-Produkt als Sicherheitssteuerung in ein Produkt oder eine Konstruktion integriert werden. Alle Produkte, in denen ein von Nanotec hergestelltes Komponententeil enthalten ist, müssen bei der Übergabe an den Endnutzer entsprechende Warnhinweise und Anweisungen für eine sichere Verwendung und einen sicheren Betrieb aufweisen. Alle von Nanotec bereitgestellten Warnhinweise müssen unmittelbar an den Endnutzer weitergegeben werden.

Es gelten unsere Allgemeinen Geschäftsbedingungen: de.nanotec.com/service/agb/.

1.5 Fachkräfte

Nur Fachkräfte dürfen das Gerät installieren, programmieren und in Betrieb nehmen:

- Personen, die eine entsprechende Ausbildung und Erfahrung im Umgang mit Motoren und deren Steuerung haben.
- Personen, die den Inhalt dieses technischen Handbuchs kennen und verstehen.
- Personen, die die geltenden Vorschriften kennen.

1.6 EU-Richtlinien zur Produktsicherheit

Folgende EU-Richtlinien wurden beachtet:

- RoHS-Richtlinie (2011/65/EU, 2015/863/EU)
- EMV-Richtlinie (2014/30/EU)

1.7 Mitgeltende Vorschriften

Neben diesem technischen Handbuch sind folgende Vorschriften zu beachten:

- Unfallverhütungsvorschriften
- örtliche Vorschriften zur Arbeitssicherheit

1.8 Verwendete Symbole

Alle Hinweise sind in einheitlicher Form. Der Grad der Gefährdung wird in die nachfolgenden Klassen eingeteilt.

VORSICHT

Der Hinweis VORSICHT verweist auf eine möglicherweise gefährliche Situation.

Die Missachtung des Hinweises führt möglicherweise zu mittelschweren Verletzungen.

▶ Beschreibt, wie Sie die gefährliche Situation vermeiden.

Hinweis

- Weist auf eine Fehlerquelle oder Verwechslungsgefahr hin.
- Die Missachtung des Hinweises führt **möglicherweise** zu Beschädigungen an diesem Gerät oder anderen Geräten.
- Beschreibt, wie Sie Geräteschäden vermeiden können.

Tipp

Zeigt einen Tipp zur Anwendung oder Aufgabe.

1.9 Hervorhebungen im Text

Im Dokument gelten folgende Konventionen:

Ein fett hervorgehobener Text markiert Querverweise und Hyperlinks:

- Folgende Bits im Objekt 6041_h (Statusword) haben eine gesonderte Funktion:
- Eine Liste verfügbarer Systemcalls findet sich im Kapitel Systemcalls im NanoJ-Programm.

Ein kursiv hervorgehobener Text markiert benannte Objekte:

- Lesen Sie das Installationshandbuch.
- Benutzen Sie die Software Plug & Drive Studio, um das Auto-Setup durchzuführen.
- Für Software: Im Tab Operation finden Sie die entsprechenden Informationen.
- Für Hardware: Benutzen Sie den EIN/AUS-Schalter, um das Gerät einzuschalten.

Ein Text in courier markiert einen Code-Abschnitt oder Programmierbefehl:

- Die Zeile mit dem Befehl od write (0x6040, 0x00, 5); ist wirkungslos.
- Die NMT-Nachricht baut sich wie folgt auf: 000 | 81 2A

Ein Text in "Anführungszeichen" markiert Benutzereingaben:

- NanoJ-Programm starten durch Beschreiben von Objekt 2300_h, Bit 0 = "1".
- Wird in diesem Zustand bereits Haltemoment benötigt, muss in das 3212_h:01_h der Wert "1" geschrieben werden.

1.10 Zahlenwerte

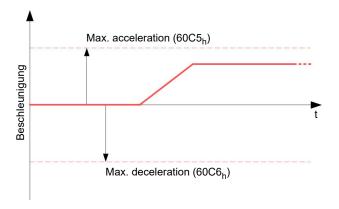
Zahlenwerte werden grundsätzlich in dezimaler Schreibweise angegeben. Sollte eine hexadezimale Notation verwendet werden, wird das mit einem tiefgestellten *h* am Ende der Zahl markiert.

Die Objekte im Objektverzeichnis werden mit Index und Subindex folgendermaßen notiert:

Sowohl der Index als auch der Subindex werden in hexadezimaler Schreibweise angegeben. Sollte kein Subindex notiert sein, gilt der Subindex 00_h.

Beispiel: Der Subindex 5 des Objekts 1003_h wird adressiert mit 1003_h : 05_h , der Subindex 00 des Objekts 6040_h mit 6040_h .

1.11 Bits


Einzelne Bits in einem Objekt beginnen bei der Nummerierung immer bei dem LSB (Bitnummer 0). Siehe nachfolgende Abbildung am Beispiel des Datentyps *UNSIGNED8*.

1.12 Zählrichtung (Pfeile)

In Abbildungen gilt die Zählrichtung immer in Richtung eines Pfeiles. Die in der nachfolgenden Abbildung beispielhaft dargestellten Objekte 60C5_h und 60C6_h werden beide positiv angegeben.

10

2 Sicherheits- und Warnhinweise

Hinweis

- · Beschädigung der Steuerung.
- Ein Wechsel der Verdrahtung im Betrieb kann die Steuerung beschädigen.
- Ändern Sie die Verdrahtung nur im spannungsfreien Zustand und warten Sie nach dem Abschalten, bis sich die Kondensatoren entladen haben.

Hinweis

- Störung der Steuerung durch Erregerspannung des Motors.
- Während des Betriebs können Spannungsspitzen die Steuerung beschädigen.
- Verbauen Sie geeignete Schaltungen (z. B. Stützkondensator), die Spannungsspitzen abbauen.

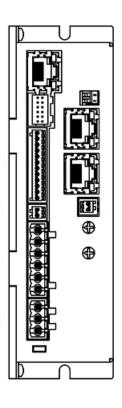
Hinweis

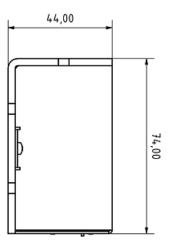
- Ein Verpolungsschutz ist nicht gegeben.
- Bei Verpolung entsteht ein Kurzschluss zwischen Versorgungsspannung und GND (Masse) über die Leistungsdiode.
- Installieren Sie eine Leitungsschutzeinrichtung (Sicherung) in der Zuleitung.

Hinweis

- Das Gerät enthält Bauteile, die empfindlich gegen elektrostatische Entladung sind.
- Unsachgemäßer Umgang kann das Gerät beschädigen.
- Beachten Sie die Grundprinzipien des ESD-Schutzes beim Umgang mit dem Gerät.

3 Technische Daten und Anschlussbelegung


3.1 Umgebungsbedingungen


Umgebungsbedingung	Wert
Schutzklasse	IP20
Umgebungstemperatur (Betrieb)	-10 +40°C
Luftfeuchtigkeit (nicht kondensierend)	0 95 %
Aufstellhöhe über NN (ohne Leistungsbeschränkung)	1500 m
Umgebungstemperatur (Lagerung)	-25 +85°C

3.2 Maßzeichnungen

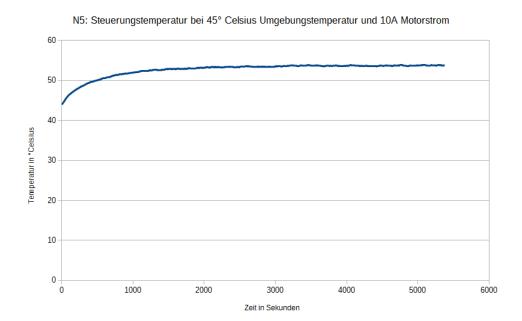
3.3 Elektrische Eigenschaften und technische Daten

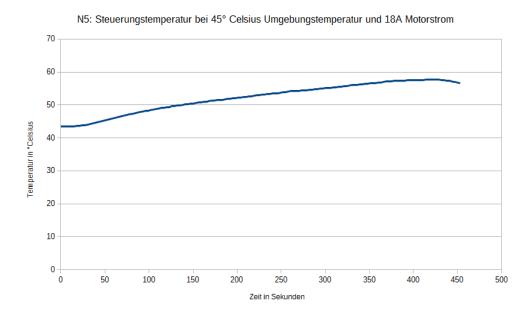
Eigenschaft	Beschreibung/Wert
Betriebsspannung	 12 V -5%72 V +4% DC für die <i>low current-Version</i> mit der Bezeichnung N5-1-5 12 V - 48 V ±5% DC für die <i>high current-Version</i> mit der Bezeichnung: N5-2-5 und bis Hardware-Version w007

Eigenschaft	Beschreibung/Wert
	• 12 V -5%57,4 V DC für die <i>high current-Version</i> mit der Bezeichnung N5-2-5 und ab Hardware-Version w007b
Nennstrom	N5-1-5 (low current): 10 A _{eff}
	N5-2-5 (high current): 18 A _{eff}
Spitzenstrom	N5-1-5 (low current): 10 A _{eff}
	N5-2-5 (high current): 40 A _{eff} für 5 Sekunden
Kommutierung	Schrittmotor Open Loop, Schrittmotor Closed Loop mit Encoder, BLDC-Motor Closed Loop mit Hall Sensor und BLDC-Motor Closed Loop mit Encoder
Betriebsmodi	Profile Position Mode, Profile Velocity Mode, Profile Torque Mode, Velocity Mode, Homing Mode, Interpolated Position Mode, Cyclic Sync Position Mode, Cyclic Sync Velocity Mode, Cyclic Synchronous Torque Mode, Takt-Richtung-Modus
Sollwertvorgabe/ Programmierung	Modbus RTU (RS-485), Ethernet, Takt-Richtung, Analog, NanoJ- Programm
Schnittstellen	RS-485 galvanisch getrennt (Modbus RTU), Ethernet
Eingänge	 4 Eingänge 5 V/24 V (Eingang 1 bis 4) einzeln per Software umschaltbar, Werkseinstellung: 5 V 2 Eingänge Weitbereich 5–24 V (Eingang 5 und 6) 2 Analogeingänge -10 bis +10 V (Werkseinstellung) oder 0–20 mA (per Software umschaltbar)
Ausgänge	2 Ausgänge, (Open Drain, 0 schaltend, max. 24 V und 500 mA)
Encodereingang	5 V oder 24 V Signal, differentiell oder single-ended (per Software umschaltbar, Werkseinstellung: single-ended), max. Auflösung 65536 Inkremente pro Umdrehung (16 Bit)
Schutzschaltung	Über- und Unterspannungsschutz
	Übertemperaturschutz (> 75° Celsius auf der Leistungsplatine)
	Verpolungsschutz: bei Verpolung Kurzschluss zwischen Versorgungsspannung und GND über Leistungsdiode, daher ist eine Leitungsschutzeinrichtung (Sicherung) in Zuleitung nötig. Die Werte der Sicherung ist abhängig von der Applikation und muss
	 größer als die maximalen Stromaufnahme der Steuerung kleiner als der maximale Strom der Spannungsversorgung ausgelegt werden.
	Falls der Sicherungswert sehr nahe an der maximalen Stromaufnahme der Steuerung liegt, sollte eine Auslösecharakteristik mittel/träge eingesetzt werden.

3.4 Übertemperaturschutz

Ab einer Temperatur von ca. 75 °C auf der Leistungsplatine (entspricht 65 - 72 °C außen am Deckel) wird das Leistungsteil der Steuerung abgeschaltet und das Fehlerbit gesetzt (siehe Objekt 1001_h und 1003_h). Nach Abkühlung und dem Bestätigen des Fehlers (siehe **Tabelle für das Contolword**, "Fault reset") funktioniert die Steuerung wieder normal.

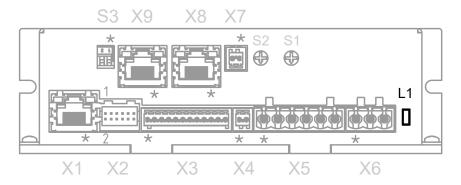



Die folgenden Ergebnisse von Temperaturtests geben einen Hinweis auf das Temperaturverhalten dieser Steuerung.

Es wurden Temperaturtests unter folgenden Bedingungen durchgeführt:

- Betriebsspannung: 48 V DC
- Motorstrom: 10 A (N5-1 low current)/18 A (N5-2 high currrent) effektiv
- Operationsmodus: Drehzahlmodus Vollschritt, 30 U/min
- Umgebungstemperatur: 25 °C / 45 °C
- Aufstellhöhe: 500 m über NN

Die folgende Grafik zeigt die Ergebnisse der Temperaturtests:

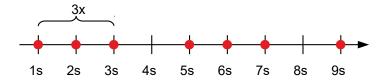


Hinweis

Da das genaue Temperaturverhalten außer vom Motor auch von der Anflanschung und dem dortigen Wärmeübergang sowie von der Konvektion in der Applikation abhängt, empfehlen wir bei Applikationen, die hinsichtlich Stromhöhe und Umgebungstemperatur problematisch sind, immer einen Dauertest in der realen Umgebung.

3.5 LED-Signalisierung

3.5.1 Betriebs-LED


Normaler Betrieb

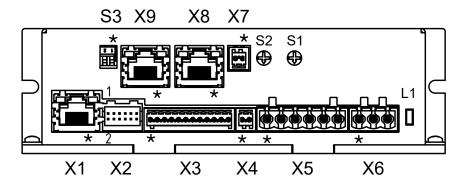
Im normalen Betrieb blinkt die grüne Betriebs-LED L1 einmal in der Sekunde sehr kurz auf.

Fehlerfall

Liegt ein Fehler vor, schaltet die LED auf Rot um und signalisiert eine Fehlernummer. In der folgenden Darstellung wird der Fehler mit der Nummer 3 signalisiert.

Folgende Tabelle zeigt die Bedeutung der Fehlernummern.

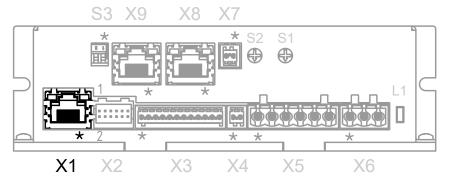
Blinktakt	Fehler	
1	Allgemein	
2	Spannung	
3	Temperatur	
4	Überstrom	
5	Regler	
6	Watchdog-Reset	



Hinweis

Für jeden aufgetretenen Fehler wird im Objekt 1003_h ein genauerer Fehlercode hinterlegt.

3.6 Anschlussbelegung

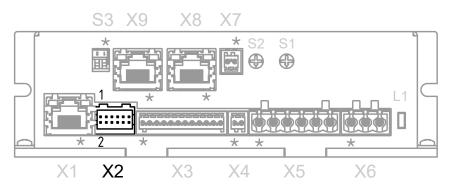

3.6.1 Übersicht

Stecker	Funktion		
X1	Ethernet		
X2	Encoder und Hall-Sensor Anschluss		
Х3	Digitale/Analoge Ein- und Ausgänge		
X4	Bremsen-Anschluss		
X5	Motoranschluss		
X6	Spannungsversorgung		
X7	Externe Logikversorgung, Eingangsspannung +24V DC		
	Spannungsversorgung für Encoder, Eingangsspannung +24V DC		
X8	RS-485 IN		
X9	RS-485 OUT		
S1	Hex-Codierschalter für Modbus-Adresse, 16-er Stelle (z.B. 0xF 0)		
S2	Hex-Codierschalter für Modbus-Adresse, 1-er Stelle (z.B. 0x0F)		
S3	PIN1 150 Ohm Terminierungswiderstand (Schalter auf ON)		
	PIN2 reserviert		
L1	Betriebs-LED		

3.6.2 Stecker X1 - Ethernet

Pin 1 ist mit einem Stern "*" markiert.

3.6.3 Stecker X2 - Encoder/Hall Sensor

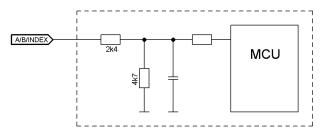


Hinweis

Es werden zwei Typen von Encoder/Hallsensor unterstützt:

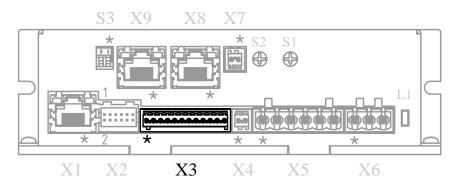
- **1.** Encoder/Hallsensor mit 5 V Versorgungsspannung. In diesem Fall ist nichts an den Stecker X7 anzuschließen, das Objekt **2059**_h muss auf den Wert "0" gesetzt werden (Werkseinstellung).
- 2. Encoder/Hallsensor mit 24 V Versorgungsspannung. In diesem Fall müssen Sie eine Spannung von 24 V DC an den Stecker X7 (siehe Stecker X7 Spannungsversorgung Encoder/ Hallsensor, externe Logikversorgung) anschließen und das Objekt 2059_h auf den Wert "1" setzen.

Pin 1 und Pin 2 sind im Bild markiert.


Pin	Funktion	Bemerkung
1	GND	
2	Vcc	+5 V DC (Werkseinstellung) oder +24 V DC, Ausgangsspannung per Software umschaltbar mit Objekt 2059 _h .
3	Α	5/24 V Signal, max. 1 MHz
4	В	5/24 V Signal, max. 1 MHz
5	A۱	5/24 V Signal, max. 1 MHz
6	B\	5/24 V Signal, max. 1 MHz
7	I	5/24 V Signal
8	1\	5/24 V Signal
9	Hall 1	5/24 V Signal
10	Hall 2	5/24 V Signal
11	Hall 3	5/24 V Signal
12	Shielding	Schirmung

Es muss sichergestellt sein, dass der Encoder die unten angegebenen Schaltschwellen erreicht. Andernfalls ist eine zusätzliche, externe Schaltung nötig.

Typ Schaltschwellen		
	Ein	Aus
Single-ended 5 V	> 3,8 V	< 0,26 V
Differenziell 5 V	> 3,8 V	< 0,26 V
Single-ended 24 V	> 14,42 V	< 4,16 V
Differenziell 24 V	> 14,42 V	< 4,16 V



Die interne Beschaltung der Encoder-Eingänge ist nachfolgend dargestellt.

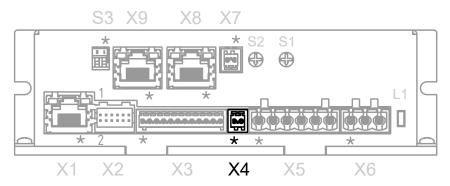
3.6.4 Stecker X3 – Ein- und Ausgänge

Pin 1 ist mit einem Stern "*" markiert.

PIN	Funktion	Bemerkung
1	GND	
2	Eingang 1	Digitaleingang 5 V / 24 V umschaltbar per Software mit Objekt 3240 _h
3	Eingang 2	Digitaleingang 5 V / 24 V umschaltbar per Software mit Objekt 3240
4	Eingang 3	Digitaleingang 5 V / 24 V umschaltbar per Software mit Objekt 3240 , max. 1 MHz, Richtungseingang in Takt-Richtungs-Modus
5	Eingang 4	Digitaleingang 5 V / 24 V umschaltbar per Software mit Objekt 3240 , max. 1 MHz, Takteingang in Takt-Richtungs-Modus
6	Eingang 5	Digitaleingang 5 V bis 24 V, nicht umschaltbar per Software
7	Eingang 6	Digitaleingang 5 V bis 24 V, nicht umschaltbar per Software
8	Analogeingang 1	-10 V+10 V oder 020 mA, umschaltbar per Software mit Objekt 3221 _h
9	Analogeingang 2	-10 V+10 V oder 020 mA, umschaltbar per Software mit Objekt 3221 _h
10	Ausgang 1	Digitalausgang, Open Drain, max. 24 V / 0,5 A
11	Ausgang 2	Digitalausgang, Open Drain, max. 24 V / 0,5 A
12	Shielding	Schirmung

Für Eingang 1 bis 4 gelten folgende Schaltschwellen:

Max. Spannung	Schaltschwellen		
	sicheres Einschalten	sicheres Ausschalten	
5 V	> 3,8 V	< 0,26 V	
24 V	> 14,42 V	< 4,16 V	

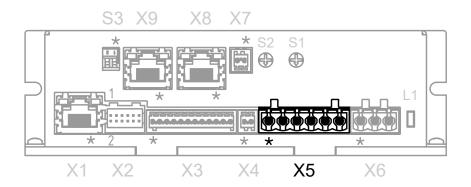

Für Eingang 5 und 6 (Weitbereichseingänge von 5-24 V) gelten folgende Schaltschwellen:

Schaltschwellen	
sicheres Einschalten	sicheres Ausschalten
> 3,25 V	< ca. 2 V

Anschlussdaten	min	max
Leiterquerschnitt starr min	0,14 mm ²	0,5 mm ²
Leiterquerschnitt flexibel min.	0,14 mm ²	0,5 mm ²
Leiterquerschnitt flexibel m. Aderendhülse ohne Kunststoffhülse min	0,25 mm ²	0,5 mm ²
Leiterquerschnitt AWG min	26	20
AWG nach UL/CUL min	28	20

3.6.5 Stecker X4 - Bremsen-Anschluss

Pin 1 ist mit einem Stern "*" markiert.


PIN	Funktion	Bemerkung
1	Bremse +	Intern mit +UB verbunden
2	Bremse -	PWM-gesteuerter Open Drain-Ausgang, max. 1,5A

Anschlussdaten	min	max
Leiterquerschnitt starr min	0,14 mm ²	0,5 mm ²
Leiterquerschnitt flexibel min.	0,14 mm ²	0,5 mm ²
Leiterquerschnitt flexibel m. Aderendhülse ohne Kunststoffhülse min	0,25 mm ²	0,5 mm ²
Leiterquerschnitt AWG min	26	20
AWG nach UL/CUL min	28	20

3.6.6 Stecker X5 - Motoranschluss

Pin 1 ist mit einem Stern "*" markiert.

PIN	Funktion (Schrittmotor)	Funktion (BLDC-Motor)	Bemerkung
1	Shielding	Shielding	Schirmung
2	Α	U	
3	Α\	V	
4	В	W	
5	B\	nicht benutzt	
6	Shielding	Shielding	Schirmung

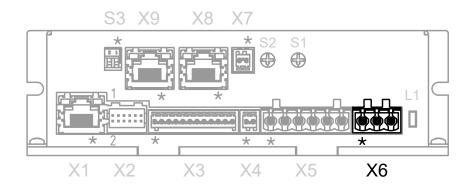
Anschlussdaten	min	max
Leiterquerschnitt starr	0,2 mm ²	2,5 mm ²
Leiterquerschnitt flexibel	0,2 mm ²	2,5 mm ²
Leiterquerschnitt flexibel m. Aderendhülse ohne Kunststoffhülse	0,25 mm ²	2,5 mm ²
Leiterquerschnitt flexibel m. Aderendhülse m. Kunststoffhülse	0,25 mm ²	1,5 mm ²
Leiterquerschnitt AWG	24	12
2 Leiter gleichen Querschnitts flexibel m. TWIN-AEH mit Kunststoffhülse	0,5 mm ²	1,5 mm ²
AWG nach UL/CUL	26	12

3.6.7 Stecker X6 – Spannungsversorgung

Spannungsquelle

Die Betriebs- oder Versorgungsspannung liefert eine Batterie, ein Transformator mit Gleichrichtung und Siebung, oder ein Schaltnetzteil.

Hinweis


- EMV: Bei einer DC-Stromversorgungsleitung mit einer Länge von >30 m oder Verwendung des Motors an einem DC-Bus sind zusätzliche Entstör- und Schutzmaßnahmen notwendig.
- Ein EMI-Filter ist in die DC-Zuleitung mit möglichst geringem Abstand zur Steuerung/Motor einzufügen.
- Lange Daten- oder Versorgungsleitungen sind durch Ferrite zu führen.

Anschlüsse

Pin 1 ist mit einem Stern "*" markiert.

22

PIN	Funktion	Bemerkung
1	Shielding	Schirmung
2	+UB	 Für die Version N5-1 (<i>low current</i>): 12 V -5%72 V +4% DC Für die Version N5-2 (<i>high current</i>) und bis Hardware-Version w007: 12 V - 48 V ±5% DC Für die Version N5-2 (<i>high current</i>) und ab Hardware-Version w007b: 12 V -5%57,4 V DC
3	GND	

Anschlussdaten	min	max
Leiterquerschnitt starr	0,2 mm ²	2,5 mm ²
Leiterquerschnitt flexibel	0,2 mm ²	2,5 mm ²
Leiterquerschnitt flexibel m. Aderendhülse ohne Kunststoffhülse	0,25 mm ²	2,5 mm ²
Leiterquerschnitt flexibel m. Aderendhülse m. Kunststoffhülse	0,25 mm ²	1,5 mm ²
Leiterquerschnitt AWG	24	12
2 Leiter gleichen Querschnitts flexibel m. TWIN-AEH mit Kunststoffhülse	0,5 mm ²	1,5 mm ²
AWG nach UL/CUL	26	12

Zulässige Betriebsspannung

Die maximal zulässige Spannung beträgt je nach Version:

- N5-1 (low current): 76 V DC
- N5-2 (high current) und bis Hardware-Version w007: 51,5 V DC
- N5-2 (*high current*) und ab **Hardware-Version** w007b: 58,5 V DC. Bei dieser Version müssen Sie, falls gewünscht, den passenden Schwellenwert in **2034h Upper Voltage Warning Level** eintragen.

Steigt die Eingangsspannung der Steuerung über diesen Schwellenwert, wird der Motor abgeschaltet und ein Fehler ausgelöst. Die integrierte Ballast-Schaltung (25 W Leistung) wird aktiviert ab:

- N5-1 (low current): 75 V DC
- N5-2 (high current) und bis Hardware-Version w007: 50,5 V DC
- N5-2 (high current) und ab Hardware-Version w007b: 57,5 V DC.

Die minimale Spannung beträgt 10 V DC. Fällt die Eingangsspannung der Steuerung unter diesen Schwellenwert, wird der Motor abgeschaltet und ein Fehler ausgelöst.

An die Versorgungsspannung muss ein Ladekondensator von mindestens 4700 μ F / 50 V (ca. 1000 μ F pro Ampere Nennstrom) angeschlossen sein, um ein Überschreiten der zulässigen Betriebsspannung (z.B. beim Bremsvorgang) zu vermeiden.

3.6.8 Stecker X7 – Spannungsversorgung Encoder/Hallsensor, externe Logikversorgung

Funktionalität

Die Spannungsversorgung an X7 muss unter einer der folgenden Bedingungen angeschlossen werden:

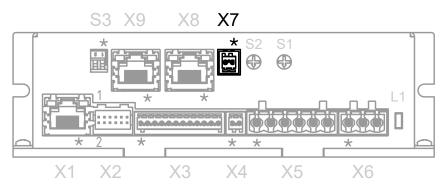
- Es kommt ein 24 V Encoder/Hallsensor zum Einsatz. In diesem Fall muss eine Spannung von 24 V DC an X7 angeschlossen und das Bit 0 im Objekt 2059_h auf den Wert "1" gestellt werden.
- 2. Es ist eine Logik-Spannungsversorgung für die Steuerung notwendig, um im Falle eines Zusammenbruchs der Stromversorgung auf Stecker X6 (siehe "Stecker X6 Spannungsversorgung") weiter Zugriff auf folgende Funktionen zu haben:
 - · Logische Funktionalität der Steuerung
 - Kommunikation der Steuerung
 - Encoder

Hinweis

Die Wicklungen des Motors werden nicht von der Logikversorgung versorgt.

In diesem Fall muss die eine Spannung von 24 V DC an X7 angeschlossen werden. Bei einem 24 V-Encoder muss das Bit 0 im Objekt **2059**_h auf den Wert "1" gestellt werden. Im Falle eines 5 V-Encoders ist das Bit 0 im Objekt **2059**_h auf den Wert "0" (Werkseinstellung) zu setzen.

Hinweis

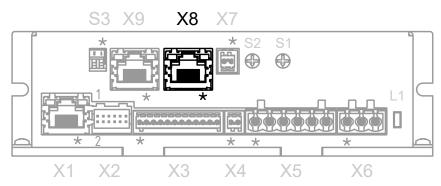

Beschädigungen des Encoders/Hallsensors durch hohe Spannung!

Der Encoder/Hallsensor kann beschädigt werden, wenn das Objekt 2059_h falsch konfiguriert ist.

► Stellen Sie sicher, dass das Bit 0 im Objekt 2059_h nicht gesetzt ist, bevor Sie einen Encoder/ Hallsensor mit Nennspannung kleiner 24 V anschließen.

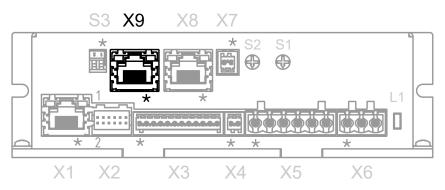
Anschluss

Pin 1 ist mit einem Stern "*" markiert.


PIN	Funktion	Bemerkung
1	+UB Logik/ Encoder	+24 V DC, Versorgungsspannung für Logik und Encoder/ Hallsensor
2	GND	

Anschlussdaten	min	max
Leiterquerschnitt starr min	0,14 mm ²	0,5 mm ²
Leiterquerschnitt flexibel min.	0,14 mm ²	0,5 mm ²
Leiterquerschnitt flexibel m. Aderendhülse ohne Kunststoffhülse min	0,25 mm ²	0,5 mm ²
Leiterquerschnitt AWG min	26	20
AWG nach UL/CUL min	28	20

3.6.9 Stecker X8 - RS-485 IN

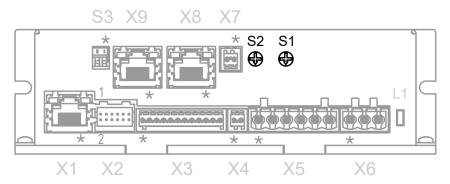

Pin 1 ist mit einem Stern "*" markiert.

PIN	Funktion	Bemerkung
1	n.c.	
2	n.c.	
3	n.c.	
4	D1 (RS-485 +)	
5	D0 (RS-485 -)	
6	n.c.	
7	n.c.	
8	Common	Signal- und Versorgung-Common

3.6.10 Stecker X9 - RS-485 OUT

Pin 1 ist mit einem Stern "*" markiert.

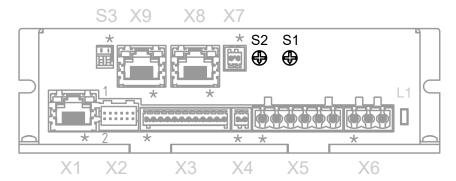
PIN	Funktion	Bemerkung
1	n.c.	
2	n.c.	



PIN	Funktion	Bemerkung
3	n.c.	
4	D1 (RS-485 +)	
5	D0 (RS-485 -)	
6	n.c.	
7	n.c.	
8	Common	Signal- und Versorgung- Common

3.6.11 Schalter S1 - Hex-Codierschalter für Slave-Adresse und Baudrate

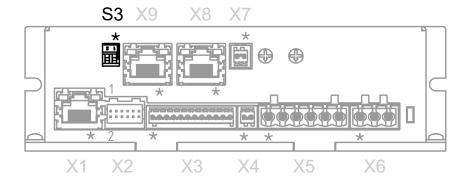
Hex-Codierschalter zum Einstellen der Modbus-Adresse und Baudrate. Siehe Kapitel **Kommunikationseinstellungen**.


Der Wert dieses Schalters wird mit 16 multipliziert und zum Wert des Schalters S2 addiert, damit stellt dieser Schalter die sechzehner Stelle.

3.6.12 Schalter S2 – Hex-Codierschalter für Slave-Adresse und Baudrate

Hex-Codierschalter zum Einstellen der Modbus-Adresse und Baudrate. Siehe Kapitel **Kommunikationseinstellungen**.

Der Wert dieses Schalters wird zum Wert des Schalters S1 addiert, damit stellt dieser Schalter die einer Stelle.


Beispiel

Schalter S1 steht auf dem Wert " 1_h ", Schalter S2 auf dem Wert " F_h ", daraus ergibt sich der Wert " $1F_h$ ".

3.6.13 Schalter S3 – 150 Ohm Terminierungswiderstand

Dieser DIP-Schalter (PIN 1, mit einem Stern "*" markiert) schaltet die Terminierung von 150 Ω zwischen RS-485+ und RS-485- zu oder ab.

4 Inbetriebnahme

In diesem Kapitel wird beschrieben, wie Sie die Kommunikation zur Steuerung aufbauen und die notwendigen Parameter einstellen, damit der Motor betriebsbereit ist. Sie können die Steuerung über Ethernet oder Modbus RTU konfigurieren.

Die Software *Plug & Drive Studio* bietet Ihnen eine Möglichkeit, die Konfiguration vorzunehmen und die Steuerung an den angeschlossenen Motor anzupassen. Weiterführende Informationen finden Sie im Dokument *Plug & Drive Studio: Quick Start Guide* auf **www.nanotec.de**.

Beachten Sie folgenden Hinweis:

Hinweis

- EMV: Stromführende Leitungen insbesondere um Versorgungs- und Motorenleitungen erzeugen elektromagnetische Wechselfelder.
- Diese können den Motor und andere Geräte stören. Nanotec empfiehlt folgende Maßnahmen:
- Geschirmte Leitungen verwenden und den Leitungsschirm beidseitig auf kurzem Weg erden.
- Kabel mit paarweise verdrillten Adern verwenden.
- Stromversorgungs- und Motorleitungen so kurz wie möglich halten.
- · Motorgehäuse großflächig auf kurzem Weg erden.
- Versorgungs-, Motor- und Steuerleitungen getrennt verlegen.

4.1 Konfiguration über Ethernet

4.1.1 Übersicht

Schnittstelle

Die Steuerung ist am Stecker X1 mit einer 10/100 MBit-Ethernet-Schnittstelle ausgestattet. Dadurch kann sie mit allen gängigen Ethernet-Komponenten (Switches, PCs) betrieben werden und über die Software *Plug & Drive Studio* konfiguriert werden.

Hardware-Adresse

Die Steuerung hat zunächst noch keine IP-Adresse, sondern wird über die aufgedruckte Hardware-Adresse (MAC-Adresse) angesprochen. Diese Adresse besteht aus 6 Hexadezimal-Zahlen in der Form 44-AA-E8-xx-xx-xx.

Die Hardware-Adresse ist eindeutig und unveränderbar und wird bei der Produktion vergeben. Im Regelfall wird diese nur beim Firmware-Update benötigt. Sobald sich der Bootloader beendet hat und die eigentliche Firmware in Betrieb geht, erfolgt die weitere Kommunikation über das Protokoll TCP/IP.

IP-Adresse

Die Steuerung benötigt eine gültige IP-Adresse. Diese kann über folgende Wege bezogen werden:

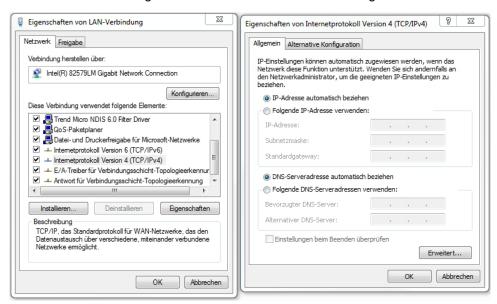
- DHCP: Ein DHCP-Server vergibt die IP-Adresse an die Steuerung (Standardeinstellung).
- AutoIP: Die Steuerung ermittelt selbstständig eine geeignete IP-Adresse. Dies setzt voraus, dass sich der Kommunikationspartner im selben physikalischen Subnetz befindet und ebenfalls AutoIP verwendet.
- · Statische IP-Adresse: Diese wird vom Benutzer festgelegt.

Welche Methode zum Einsatz kommt, ist von der Netzwerkumgebung abhängig und wird vom Netzwerkbetreuer festgelegt.

28

4.1.2 Verbindung zur Steuerung herstellen

Einstellen der IP-Adresse


Die angeschlossenen Geräte (Steuerung und Kommunikationspartner) in einem Ethernet-Netzwerk oder bei einer Ethernet-Punkt-zu-Punkt-Verbindung benötigen jeweils eine eindeutige IP-Adresse. Diese kann entweder automatisch bezogen (DHCP) bzw. generiert (Auto-IP) oder statisch vorgegeben werden. Im weiteren Verlauf wird unter "Kommunikationspartner" ein PC oder Laptop verstanden.

Sie können die Steuerung in ein bestehendes Ethernet-Netzwerk integrieren. Dazu ist lediglich die physikalische Verbindung per Standard-Ethernetkabel herzustellen. Sofern DHCP auf der Steuerung aktiviert ist (werksseitig voreingestellt), wird die Steuerung auch automatisch im Netzwerk erkannt und kann sofort über einen im Netzwerk befindlichen PC bedient werden.

Einstellen DHCP/Auto-IP

IP-Adressen können in einem Netzwerk dynamisch von einem DHCP-Server bezogen werden oder beispielsweise bei einer PC-Direktverbindung ohne DHCP-Server automatisch durch die beiden kommunizierenden Geräte (z.B. PC und Steuerung) selbst generiert werden. In der Steuerung ist bereits werksseitig DHCP für den automatischen Bezug einer IP-Adresse von einem DHPC-Server oder der automatischen IP-Adressgenerierung voreingestellt. Es sind lediglich seitens des Kommunikationspartners (z.B. PC oder Laptop) eventuell einige Einstellungen für die Herstellung der Verbindung zur Steuerung notwendig. Einstellungen als Beispiel beim Betriebssystem Windows 7:

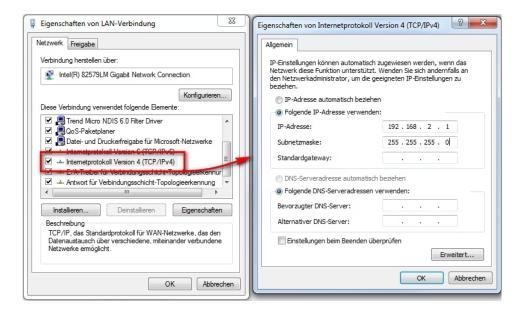
- 1. Windows-Start-Button drücken und Systemsteuerung auswählen.
- 2. Netzwerk- und Freigabecenter auswählen.
- 3. Adaptereinstellungen ändern auswählen.
- **4.** Es wird die Liste der verfügbaren Netzwerkadapter dargestellt. Am Adapter, mit welchem die Steuerung verbunden ist, die Eigenschaften öffnen (beispielsweise mit einem Klick mit der rechten Maustaste).
- 5. Internetprotokoll Version 4 (TCP/IPv4) anwählen und die Schaltfläche Eigenschaften drücken.
- **6.** Option *IP-Adresse automatisch beziehen* auswählen.
- 7. Übernahme der Eingaben mit der Schaltfläche OK bestätigen.

Einstellen einer statischen IP-Adresse

Sollen an die Steuerung und den Kommunikationspartner statische IP-Adressen vergeben werden, sind nur wenige Einstellungen seitens der Steuerung und des Kommunikationspartners durchzuführen.

Der Steuerung kann durch OD-Einträge eine statische IP-Adresse und Netzwerkmaske (jeweils IPv4) gegeben werden. Im Objektverzeichnis sind folgende Einträge maßgeblich:

Index	Beschreibung	
2010 _h	IP-Configuration, Bitmaske mit folgender Bedeutung:	
	Bit 0: Eine statische IP-Adresse aus dem Objekt 2011 _h und die Netzwerkmaske aus dem Objekt 2012 _h wird genutzt.	
2011 _h	Statische IP-Adresse, 4 Bytes in Hex-Codierung	
2012 _h	Statische IP-Subnetzmaske, 4 Bytes in Hex-Codierung	
2013 _h	Gateway Adresse	
2014 _h	Aktive IP-Adresse, 4 Bytes in Hex-Codierung	
2015 _h	Aktive IP-Subnetzmaske, 4 Bytes in Hex-Codierung	
2016 _h	Momentan benutzte Gateway Adresse	
200F _h	MAC-Adresse	


Anmerkungen:

- Wurde DHCP aktiviert und Auto-IP ist nicht aktiv, so benutzt die Steuerung die eingestellte statische IP-Adresse, falls über DHCP keine Adresse zugeteilt werden konnte (z. B. weil der DHCP-Server temporär nicht verfügbar ist).
- Wenn beide Objekte 2010_h und 2011_h auf den Wert "0" gesetzt werden, wird von einer falschen Konfiguration ausgegangen und DHCP angeschaltet.
- Wenn im Objekt 2010_h Bit 0 gesetzt ist, wird die statische IP-Adresse benutzt. DHCP und Auto-IP werden in diesem Fall nicht genutzt.
- Wenn DHCP und Auto-IP gleichzeitig aktiviert sind, wird zuerst über DHCP versucht, eine Adresse zu beziehen. Sollte dies nicht funktionieren wird Auto-IP durchgeführt.
- Wenn nur DHCP angeschalten ist und eine IP-Adressvergabe nicht funktioniert hat, wird unabhängig von Bit 0 versucht, sich mit der eingetragenen statischen IP-Adresse sich zu verbinden.

Dem Kommunikationspartner wird ebenfalls eine statische IP-Adresse gegeben. Einstellungen als Beispiel beim Betriebssystem Windows 7:

- 1. Windows-Start-Button drücken und Systemsteuerung auswählen.
- 2. Netzwerk- und Freigabecenter auswählen.
- 3. Adaptereinstellungen ändern auswählen.
- **4.** Es wird die Liste der verfügbaren Netzwerkadapter dargestellt. Am Adapter, mit welchem die Steuerung verbunden ist, die Eigenschaften öffnen (z.B. rechter Mausklick und *Eigenschaften* auswählen).
- 5. Internetprotokoll Version 4 (TCP/IPv4) anwählen und die Schaltfläche Eigenschaften drücken.
- **6.** Option *Folgende IP-Adresse verwenden:* auswählen und im Feld *IP-Adresse* die gewünschte IP-Adresse und Netzwerkmaske eintragen.
- 7. Übernahme der Eingaben mit der Schaltfläche OK bestätigen.

Netzwerkverbindung herstellen

Physikalische Verbindung zwischen Steuerung und Kommunikationspartner durch Standard-Ethernetkabel herstellen. Wurden an die Steuerung und dem Kommunikationspartner statische IP-Adressen vergeben, können diese direkt kommunizieren.

Falls Sie einen eigenen DHCP-Server besitzen und die IP-Adresse herausfinden wollen, lässt sich das am einfachsten über das Tool *ping* bewerkstelligen. Dazu muss der NetBIOS-Service auf dem PC aktiviert sein und die MAC-Adresse der Steuerung muss bekannt sein.

Beispiel

Falls die Steuerung mit der MAC Adresse 44:AA:E8:00:02:9F angesprochen werden soll, ist der Aufruf für das Tool in einer Shell oder Command-Line:

ping MAC-44AAE800029F

4.1.3 REST-Webservices

Einleitung

Das Protokoll des Webservers ist HTTP/1.0. Die Architektur ist dabei nach REST (Representional State Transfer) realisiert und bietet die Möglichkeit, auf Objekte/Ressourcen zuzugreifen. Ein Beispiel hierfür sind die Werte im Objektverzeichnis.

Die unterstützten Operationen sind hierbei:

- GET: Anforderung einer Ressource
- POST: Hinzufügen einer neuen Ressource

Ressourcen-Namen

Der Name einer Ressource wird immer in der vom Internet bekannten *URI (Uniform Resource Identifier)*-Notation angegeben. Die Steuerung unterstützt über diese *URI* den Zugriff auf das **Objektverzeichnis**. Der Identifier hierfür ist:

Od: Objektverzeichnis

Beispiel

Zugriff auf einen Wert im Objektverzeichnis:

```
GET /od/6040/00 HTTP/1.0
```

Mit diesem String erfolgt der Zugriff auf den Eintrag 6040_h Subindex 00_h im Objektverzeichnis.

Die Rückantwort erfolgt als JSON-String und gibt den Inhalt dieses Objektes wieder:

```
HTTP/1.0 200 OK
Server: uip/1.0
Cache-Control: no-cache, no-store, private
Content-type: application/json
"0006"
```

Schreiben eines Werts ins Objektverzeichnis:

```
POST /od/6040/00 HTTP/1.0
Content-Type: application/x-www-form-urlencoded
Form item: ""000F"" = ""(Key: "000F", Value:)
```

Mit diesem String wird der Wert "15(0F_h)" ins Objekt **6040**_h Subindex 00_h geschrieben.

Die Steuerung erhält eine Bestätigung mit dem Status-Code 200 OK:

```
HTTP/1.0 200 OK
Server: uip/1.0
```

Zugriff auf das Objektverzeichnis

Folgende URIs ermöglichen einen Zugriff auf das Objektverzeichnis:

<IP-Adresse>/od/xxxx/yy

Fordert den Eintrag xxxx Subindex yy aus dem Objektverzeichnis an.

<IP-Adresse>/od/xxxx/data

Fordert den Eintrag xxxx mit allen Subindizes an.

Beispiel

Zugriff auf einen Wert im Objektverzeichnis:

```
http://192.168.2.100/od/6040/00
```

Mit diesem String erfolgt der Zugriff auf den Eintrag 6040_h Subindex 00_h im Objektverzeichnis.

Die Rückantwort erfolgt als JSON-String und gibt den Inhalt dieses Objektes wieder.

4.2 Konfiguration über Modbus RTU

In den folgenden Kapiteln wird beschrieben, wie Sie die Kommunikation aufbauen.

Ab Werk ist die Steuerung ist auf Slave-Adresse 1, Baudrate 19200 Baud, even Parity, 1 Stop Bit eingestellt.

4.2.1 Kommunikationseinstellungen

Slave-Adresse, Baudrate und Parität ergeben sich abhängig von der Position der *Drehschalter* S1 und S2 und ggf. noch von den Objekten **2028**_h, **202D**_h.

Konfiguration	Objekt	Wertebereich	Werkseinstellung
Slave Adresse	2028 _h	1 bis 247	5
Baudrate	202A _h	7200 bis 256000	19200
Parity	202D _h	None: 0x00Even: 0x04Odd: 0x06	0x04 (Even)

Die Anzahl der Datenbits ist dabei immer "8". Die Anzahl der Stop-Bits ist abhängig von der Parity-Einstellung:

- · Keine Parity: 2 Stop Bits
- "Even" oder "Odd" Parity: 1 Stop Bit

Unterstützt werden folgende Baudraten:

- 7200
- 9600
- 14400
- 19200
- 38400
- 56000
- 57600
- 115200
- 128000
- 256000

Drehschalter

Die N5 verfügt über zwei Hex-Codierschalter - ähnlich wie in der nachfolgenden Abbildung.

Mit der Zahlenkombination aus beiden Drehschaltern können Sie die Quelle für die Slave-Adresse, die Baudrate und die Parität einstellen.

Dabei gilt: die Zahlenkombination setzt sich aus beiden Drehschalter S1 und S2 zusammen, wobei S1 das höherwertigere Byte darstellt und S2 entsprechend das niederwertigere Byte

Beispiel

Schalter S1 steht auf dem Wert " 0_h ", Schalter S2 auf dem Wert " F_h ", daraus ergibt sich der Wert " $0F_h$ "=" 16_d ".

Schalter S1 steht auf dem Wert " A_h ", Schalter S2 auf dem Wert " 1_h ", daraus ergibt sich der Wert " $A1_h$ "=" 161_d ".

Zahlenkombination der Drehschalter		Slave-Adresse	Baudrate und Parität	
dec	hex			
0	0	Objekt 2028 _h	Objekt 202A _h bzw. 202D _h	
1-247	1-F7	Zahl der Drehschalter	Objekt 202A _h bzw. 202D _h	
248-255	F8-FF	5	19200, even Parity	

4.2.2 Kommunikation aufbauen

- 1. Verbinden Sie den *Modbus-Master* mit der Steuerung über die RS-485 + und RS-485- (siehe **Stecker X8 RS-485 IN**) Leitungen.
- 2. Versorgen Sie die Steuerung mit Spannung.
- Ändern Sie ggf. die Konfigurationswerte.
 Ab Werk ist die Steuerung ist auf Slave Address 1, Baudrate 19200 Baud, even Parity, 1 Stop Bit eingestellt.
- 4. Zum Testen der Schnittstelle senden Sie die Bytes 01 65 55 00 2E 97 an die Steuerung (eine detaillierte Beschreibung der Modbus-Funktionscodes finden Sie im Kapitel Modbus RTU). Das Objektverzeichnis wird ausgelesen.

4.3 Motordaten einstellen

Die Steuerung benötigt vor der Inbetriebnahme des Motors einige Werte aus dem Motordatenblatt.

- Polpaarzahl: Objekt 2030_h:00_h (Pole pair count) Hier ist die Anzahl der Motorpolpaare einzutragen.
 Bei einem Schrittmotor wird die Polpaarzahl über den Schrittwinkel berechnet, z.B. 1,8° = 50
 Polpaare, 0,9° = 100 Polpaare (siehe Schrittwinkel im Motordatenblatt).
- Motorstrom/Motortyp einstellen:
 - Nur Schrittmotor: Objekt **2031**_h:00_h: Nennstrom (Bipolar) in mA (siehe Motordatenblatt)
 - Objekt **2031**_h:00_h: Nennstrom (Bipolar) in mA (siehe Motordatenblatt)
 - Objekt 3202_h:00_h (Motor Drive Submode Select): Definiert den Motortyp Schrittmotor, aktiviert die Stromabsenkung bei Stillstand des Motors: 0000008h. Siehe auch Kapitel Inbetriebnahme Open Loop.
 - Nur BLDC-Motor:
 - Objekt **2031**_h:00_h Spitzenstrom in mA (siehe Motordatenblatt)
 - Objekt **203B**_h:01_h Nennstrom in mA (siehe Motordatenblatt)
 - Objekt 203B_h:02_h Maximale Dauer des Spitzenstroms in ms (für eine Erstinbetriebnahme empfiehlt Nanotec einen Wert von 100 Millisekunden; Dieser Wert ist später an die konkrete Applikation anzupassen).
 - Objekt 3202_h:00_h (Motor Drive Submode Select): Definiert den Motortyp BLDC: 00000041h
- Motor mit Encoder: Objekt 2059_h:00_h (Encoder Configuration): Je nach Encoderausführung ist einer der folgenden Werte einzutragen (siehe Motordatenblatt):
 - Versorgungsspannung 5V, differentiell: 00000000h
 - Versorgungsspannung 24V, differentiell: 00000001h
 - Versorgungsspannung 5V, single-ended: 00000002h
 - Versorgungsspannung 24V, single-ended: 00000003h
- Motor mit Bremse: Objekt 3202_h:00_h (Motor Drive Submode Select): Für die Erstinbetriebnahme wird die Bremsensteuerung aktiviert. Abhängig von der konkreten Applikation kann diese Konfiguration bei Bedarf später wieder deaktiviert werden. Je nach Motortyp ist eines der folgenden Werte einzutragen:
 - Schrittmotor, Bremsensteuerung (und Stromabsenkung) aktiviert: 0000000Ch

BLDC-Motor, Bremsensteuerung aktiviert: 00000044h

4.4 Motor anschließen

Nach der Einstellung der Motorparameter, siehe **Motordaten einstellen**, schließen Sie den Motor und ggf. die vorhandenen Sensoren (Encoder/Hallsensoren) und die Bremse an.

- Motor anschließen:
 - an den Anschluss X5, siehe Stecker X5 Motoranschluss
- Encoder/Hallsensoren anschließen:
 - an den Anschluss X2, siehe Stecker X2 Encoder/Hall Sensor
- Bremse anschließen:
 - an den Anschluss X4, siehe Stecker X4 Bremsen-Anschluss

Im Kapitel **Automatische Bremsensteuerung** wird beschrieben, wie die automatische Bremsensteuerung aktiviert werden kann.

4.5 Auto-Setup

Um einige Parameter im Bezug zum Motor und den angeschlossenen Sensoren (Encoder/ Hallsensoren) zu ermitteln, wird ein Auto-Setup durchgeführt. Der **Closed Loop**-Betrieb setzt ein erfolgreich abgeschlossenes Auto-Setup voraus.

Hinweis

- Beachten Sie die folgenden Voraussetzungen für das Durchführen des Auto-Setups:
- Der Motor muss lastfrei sein.
- Der Motor darf nicht berührt werden.
- Der Motor muss sich frei in beliebige Richtungen drehen können.
- Es darf kein NanoJ-Programm laufen (Objekt 2300h:00h Bit 0 = "0", siehe 2300h NanoJ Control).

Tipp

Die Ausführung des Auto-Setups benötigt relativ viel Prozessorrechenleistung. Während des Auto-Setups können dadurch eventuell die Feldbusse nicht zeitgerecht bedient werden.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Information zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

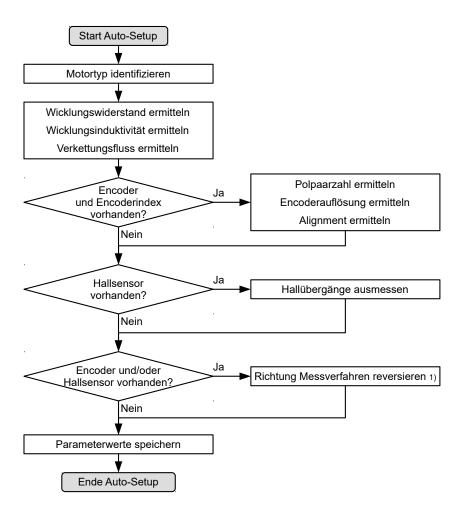
Tipp

Solange sich der an der Steuerung angeschlossene Motor oder die Sensoren für die Rückführung (Encoder/Hallsensoren) nicht ändern, ist das Auto-Setup nur einmal bei der Erstinbetriebnahme durchzuführen.

4.5.1 Parameter-Ermittlung

Das Auto-Setup ermittelt über mehrere Test- und Messläufe verschiedene Parameter des angeschlossenen Motors und der vorhandenen Sensoren. Art und Anzahl der Parameter sind teilweise von der jeweiligen Motorkonfiguration abhängig.

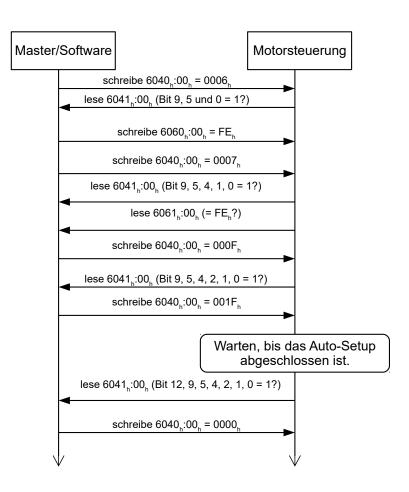
Parameter	Alle Motoren unabhängig von der Konfiguration
Motortyp (Schrittmotor oder BLDC-Motor)	X
Wicklungswiderstand	X
Wicklungsinduktivität	X
Verkettungsfluss	X


Parameter	Motor ohne Encoder	Motor mit Encoder und Index	Motor mit Encoder ohne Index
Encoderauflösung	-	X	
Alignment (Verschiebung des elektrischen Nullpunkts zum Index.)	-	X	

Parameter	Motor ohne Hallsensor	Motor mit Hallsensor
Hallübergänge	-	X

4.5.2 Durchführung

- Zum Vorwählen des Betriebsmodus Auto-Setup tragen Sie in das Objekt 6060_h:00_h den Wert "-2" (="FE_h") ein.
 - Die *Power state machine* muss nun in den Zustand *Operation enabled* versetzt werden, siehe **CiA 402 Power State Machine**.
- 2. Starten Sie das *Auto-Setup* mit Setzten von Bit 4 *OMS* im Objekt 6040_h:00_h (Controlword).



Während der Ausführung des Auto-Setups werden nacheinander folgende Tests und Messungen durchgeführt:

1) Zum Ermitteln der Werte wird die Richtung des Messverfahrens reversiert und die Flankenerkennung erneut ausgewertet.

Der Wert 1 im Bit 12 OMS im Objekt $6041_h:00_h$ (Statusword) zeigt an, dass das Auto-Setup vollständig durchgeführt und beendet wurde. Zusätzlich kann über das Bit 10 TARG im Objekt $6041_h:00_h$ abgefragt werden, ob ein Encoder-Index gefunden wurde (= "1") oder nicht (= "0").

4.5.3 Parameterspeicherung

Nach erfolgreichem *Auto-Setup* werden die ermittelten Parameterwerte automatisch in die zugehörigen Objekte übernommen und mit dem Speichermechanismus gespeichert, siehe **Objekte speichern** und **1010h Store Parameters**. Benutzt werden die Kategorien *Drive* 1010_h:05_h und *Tuning* 1010_h:06_h.

VORSICHT

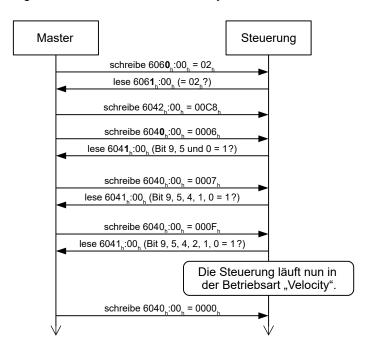
Unkontrollierte Motorbewegungen!

Das interne Koordinatensystem ist nach dem Auto-Setup nicht mehr gültig. Es kann zu unvorhersehbaren Reaktionen kommen.

▶ Starten Sie das Gerät nach einem Auto-Setup neu. Homing alleine genügt nicht.

4.6 Testlauf

Nach der Konfiguration und dem Auto-Setup kann ein Testlauf durchgeführt werden. Beispielhaft wird der Betriebsmodus **Velocity** angewendet.


Die Werte werden von Ihrem *Modbus-Master* an die Steuerung übertragen. Dabei sollte der *Master* nach jeder Übertragung über Status-Objekte der Steuerung die erfolgreiche Parametrierung überprüfen.

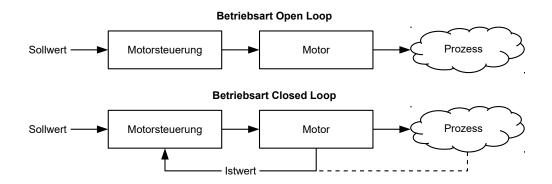
- Wählen Sie den Modus Velocity, indem Sie das Objekt 6060_h (Modes Of Operation) auf den Wert "2" setzen.
- 2. Schreiben Sie die gewünschte Drehzahl in 6042_h.

3. Versetzen Sie die *Power state machine* in den Zustand *Operation enabled*, siehe **CiA 402 Power State Machine**.

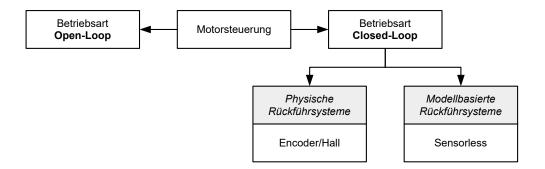
Folgender Ablauf startet den Velocity Modus, der Motor dreht dabei mit 200 U/min.

4. Um den Motor zu stoppen, setzen Sie das Controlword (6040_h) auf "0".

5 Generelle Konzepte


5.1 Betriebsarten

5.1.1 Allgemein


Die Betriebsart von Systemen ohne Rückführung wird als *Open Loop*, die mit Rückführung als *Closed Loop* bezeichnet. In der Betriebsart *Closed Loop* ist es zunächst unerheblich, ob die zurückgeführten Signale vom Motor selbst oder aus dem beeinflussten Prozess kommen.

Bei Steuerungen mit Rückführung wird die gemessene Regelgröße (Istwert) permanent mit einer Führungsgröße (Sollwert) verglichen. Bei Abweichungen zwischen diesen Größen regelt die Steuerung entsprechend den vorgegebenen Regelparametern nach.

Dagegen fehlt den reinen Steuerungen die Rückführung der zu regelnden Größe. Die Führungsgröße (Sollwert) wird lediglich vorgegeben.

Neben den physischen Rückführsystemen (beispielsweise über Encoder oder Hallsensoren) kommen auch modellbasierte Rückführsysteme, die alle unter dem Überbegriff Sensorless bekannt sind, zum Einsatz. Beide Rückführsystemen können auch in Kombination eingesetzt werden, um die Qualität der Regelung weiter zu verbessern.

Nachfolgend werden alle möglichen Kombinationen von Betriebsarten und Rückführsysteme im Bezug auf die Motorentechnik zusammengefasst. Die Unterstützung der jeweiligen Betriebsart und Rückführung ist steuerungsspezifisch und in den Kapiteln *Anschlussbelegung* und **Betriebsmodi** nachzulesen.

Betriebsart	Schrittmotor	BLDC-Motor
Open Loop	ja	nein
Closed Loop	ja	ja

Rückführung	Schrittmotor	BLDC-Motor
Hall	nein	ja
Encoder	ja	ja
Sensorless	ja	ja

In Abhängigkeit der Betriebsart können verschiedene Betriebsmodi angewendet werden. Die nachfolgende Liste fasst alle Betriebsmodi, die in den verschiedenen Betriebsarten möglich sind, zusammen.

Betriebsmodus	Betriebsart		
	Open Loop	Closed Loop	
Profile Position	ja	ja	
Velocity	ja	ja	
Profile Velocity	ja	ja	
Profile Torque	nein ¹⁾	ja	
Homing	ja ²⁾	ja	
Interpolated Position Mode	ja ³⁾	ja	
Cyclic Synchronous Position	ja ³⁾	ja	
Cyclic Synchronous Velocity	ja ³⁾	ja	
Cyclic Synchronous Torque	nein ¹⁾	ja	
Takt-Richtung	ja	ja	

- 1) Die Drehmoment-Betriebsmodi **Profile Torque** und **Cyclic Synchronous Torque** sind in der Betriebsart *Open Loop* aufgrund einer fehlenden Rückführung nicht möglich.
- 2) Ausnahme: Homing auf Block ist aufgrund einer fehlenden Rückführung nicht möglich.
- 3) Da sich Rampen und Geschwindigkeiten in den Betriebsmodi **Cyclic Synchronous Position** und **Cyclic Synchronous Velocity** aus den vorgegeben Punkten des Masters ergeben, ist es normalerweise nicht möglich, diese Parameter so vorzuwählen und zu erproben, dass ein Schrittverlust ausgeschlossen werden kann. Es wird deshalb davon abgeraten, diese Betriebsmodi in Verbindung mit der Betriebsart *Open Loop* zu verwenden.

5.1.2 Open Loop

Einführung

Die Betriebsart *Open Loop* wird nur bei Schrittmotoren angewendet und ist ein reiner Stellbetrieb. Die Felddrehung im Stator wird durch die Steuerung vorgegeben. Der Rotor folgt der magnetischen Felddrehung ohne Schrittverluste unmittelbar, solange keine Grenzparameter - wie beispielsweise das maximal mögliche Drehmoment - überschritten werden. Im Vergleich zum *Closed Loop* werden keine komplexen internen Regelungsprozesse in der Steuerung benötigt. Dadurch sind die Anforderungen an die Steuerungshardware wie auch an die Steuerungslogik sehr gering. Im Besonderen bei preissensitiven Anwendungen und einfachen Bewegungsaufgaben wird deshalb die Betriebsart *Open Loop* vorwiegend eingesetzt.

Da es im Gegensatz zu *Closed Loop* keine Rückkopplung über die aktuelle Rotorposition gibt, kann auch kein Rückschluss auf das an der Abtriebsseite der Motorwelle anstehende Gegenmoment gezogen werden. Um eventuell an der Abtriebswelle des Motors auftretende Drehmomentschwankungen auszugleichen, liefert die Steuerung in der Betriebsart *Open Loop* über den gesamten Drehzahlbereich immer den maximal möglichen (bzw. durch Parameter vorgegebenen) eingestellten Strom an die Statorwicklungen. Die dadurch erzeugte hohe magnetische Feldstärke zwingt den Rotor, in kürzester Zeit den neuen Beharrungszustand einzunehmen. Diesem Moment

steht jedoch das Trägheitsmoment des Rotors entgegen. Unter bestimmten Betriebsbedingungen neigt diese Kombination zu Resonanzen, vergleichbar einem Feder-Masse-System.

Inbetriebnahme

Um die Betriebsart Open Loop anzuwenden, sind folgende Einstellungen notwendig:

- Im Objekt 2030_h (Pole Pair Count) die Polpaarzahl eingeben (siehe Motordatenblatt: Ein Schrittwinkel von 1,8° entspricht bei einem Schrittmotor mit 2 Phasen 50 Polpaaren und von 0,9° entspricht 100 Polpaaren).
- Im Objekt 2031_h (Max Current) den Maximalstrom in mA eingeben (siehe Motordatenblatt).
- Im Objekt 3202_h (Motor Drive Submode Select) das Bit 0 (CL/OL) mit dem Wert "0" belegen.
- Soll der Takt-Richtungs-Modus angewendet werden, dann Kapitel Takt-Richtungs-Modus berücksichtigen.

Bei Bedarf sollte die Stromabsenkung bei Stillstand des Motors aktiviert werden, um die Verlustleistung und Wärmeentwicklung zu reduzieren. Um die Stromabsenkung zu aktivieren, sind folgende Einstellungen notwendig:

- Im Objekt 3202_h (Motor Drive Submode Select) das Bit 3 (CurRed) auf "1" setzen.
- Im Objekt **2036**_h (Open Loop Current Reduction Idle Time) wird die Zeit in Millisekunden angegeben, die sich der Motor im Stillstand befinden muss, bis die Stromabsenkung aktiviert wird.
- Im Objekt 2037_h (Open Loop Current Reduction Value/factor) wird der Effektivwert angegeben, auf den der Nennstrom reduziert werden soll, wenn die Stromabsenkung im *Open Loop* aktiviert wird und sich der Motor im Stillstand befindet.

Optimierungen

Systembedingt können in der Betriebsart *Open Loop* Resonanzen auftreten, besonders bei geringer Belastung ist die Resonanzneigung hoch. Aus praktischen Erfahrungen heraus haben sich in Abhängigkeit der Applikation verschiedene Maßnahmen bewährt, um Resonanzen weitgehend zu reduzieren:

- Strom reduzieren oder erhöhen, siehe Objekt 2031_h (Max Current). Zu hohe Drehmomentreserve begünstigt Resonanzen.
- Die Betriebsspannung unter Berücksichtigung der produktspezifisch zugelassenen Bereiche reduzieren (bei genügender Drehmomentreserve) oder erhöhen. Der zulässige Betriebsspannungsbereich kann dem Produktdatenblatt entnommen werden.
- Die Regelparameter des Stromreglers über die Objekte 3210_h:09_h (I_P) und 3210_h:0A_h (I_I) optimieren.
- Anpassen der Beschleunigung, Verzögerung und/oder Zielgeschwindigkeit in Abhängigkeit des gewählten Betriebsmodus:

Betriebsmodus Profile Position

Objekte 6083_h (Profile Acceleration), 6084_h (Profile Deceleration) und 6081_h (Profile Velocity).

Betriebsmodus Velocity

Objekte 6048_h (Velocity Acceleration), 6049_h (Velocity Deceleration) und 6042_h (Target Velocity).

Betriebsmodus Profile Velocity

Objekte **6083**_h (Profile Acceleration), **6084**_h (Profile Deceleration) und **6081**_h (Profile Velocity).

Betriebsmodus Homing

Objekte **609A**_h (Homing Acceleration), **6099**_h:01_h (Speed During Search For Switch) und **6099**_h:02_h (Speed During Search For Zero).

Betriebsmodus Interpolated Position Mode

Mit der übergeordneten Steuerung können die Beschleunigungs- und Verzögerungsrampen beeinflusst werden.

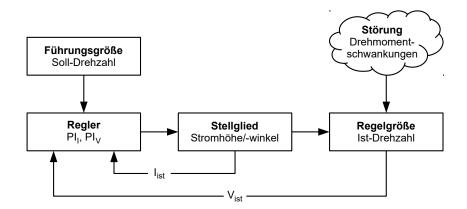
Betriebsmodus Cycle Synchronous Position

Über die externen Zielvorgaben "Positionsvorgabe/Zeiteinheit" können die Beschleunigungsund Verzögerungsrampen beeinflusst werden.

Betriebsmodus Cycle Synchronous Velocity

Über die externen Zielvorgaben "Positionsvorgabe/Zeiteinheit" können die Beschleunigungsund Verzögerungsrampen beeinflusst werden.

Betriebsmodus Takt-Richtung


Änderung der Schrittauflösung über die Objekte **2057**_h (Clock Direction Multiplier) und **2058**_h (Clock Direction Divider). Beschleunigungs-/Verzögerungsrampen durch Anpassen der Impulsfrequenz optimieren, um den Resonanzbereich möglichst schnell zu durchlaufen.

5.1.3 Closed Loop

Einführung

Die Closed Loop-Theorie geht auf die Vorstellung eines Regelkreises zurück. Eine am System einwirkende Störgröße soll möglichst schnell und ohne bleibende Abweichung ausgeregelt werden, um die Regelgröße wieder an die Führungsgröße anzugleichen.

Closed Loop am Beispiel einer Drehzahlregelung:

PI_I = Proportional-/Integralregler Stromregelkreis

Pl_V = Proportional-/Integralregler Drehzahlregelkreis

 I_{ist} = Aktueller Strom V_{ist} = Aktuelle Drehzahl

Das Closed Loop-Verfahren wird auch als "Sinuskommutierung über Encoder mit feldorientierter Regelung" bezeichnet. Kern der Closed Loop-Technologie ist die leistungsangepasste Stromregelung sowie die Rückführung der Istwerte des Prozesses. Über die Signale des Encoders wird die Rotorlage erfasst und es werden in den Motorwicklungen sinusförmige Phasenströme erzeugt. Durch die Vektorregelung des Magnetfelds ist gewährleistet, dass das Statormagnetfeld immer senkrecht zum Rotormagnetfeld steht und die Feldstärke genau dem gewünschten Drehmoment entspricht. Der in den Wicklungen so gesteuerte Strom sorgt für eine gleichmäßige Motorkraft und führt zu einem besonders ruhig laufenden Motor, der sich genau regeln lässt.

Die für die Betriebsart *Closed Loop* notwendige Rückführung der Regelgrößen kann mit verschiedenen Technologien realisiert werden. Neben der physischen Rückführung mit Encoder oder Hall-Sensoren, ist auch eine virtuelle Erfassung der Motorparameter durch softwarebasierte Modellberechnung möglich. Physikalische Größen, wie Geschwindigkeit oder Gegen-EMK, können mit Hilfe eines sogenannten "Beobachters" aus den Daten des Stromreglers rekonstruiert werden. Mit dieser Sensorless-Technologie erhält man einen "virtuellen Drehgeber", der ab einer gewissen Minimalgeschwindigkeit die Positions- und Drehzahlinformation mit der gleichen Präzision liefert wie ein realer optischer oder magnetischer Drehgeber.

Alle Steuerungen von Nanotec, welche die Betriebsart *Closed Loop* unterstützen, implementieren eine feldorientierte Regelung mit einer sinuskommutierten Stromregelung. Die Schrittmotoren und BLDC-Motoren werden also genauso geregelt wie ein Servomotor. Mit der Betriebsart *Closed Loop* können Schrittwinkelfehler während der Fahrt kompensiert und Lastwinkelfehler innerhalb eines Vollschritts korrigiert werden.

Inbetriebnahme

Vor dem Anwenden der Betriebsart *Closed Loop* muss ein Auto-Setup durchgeführt werden. Der Betriebsmodus Auto-Setup ermittelt automatisch die notwendigen Parameter (z.B. Motorkenndaten, Rückführsysteme), welche für eine optimale Arbeitsweise der feldorientierten Regelung notwendig sind. Alle Informationen zur Durchführung des Auto-Setups sind im Kapitel **Auto-Setup** beschrieben.

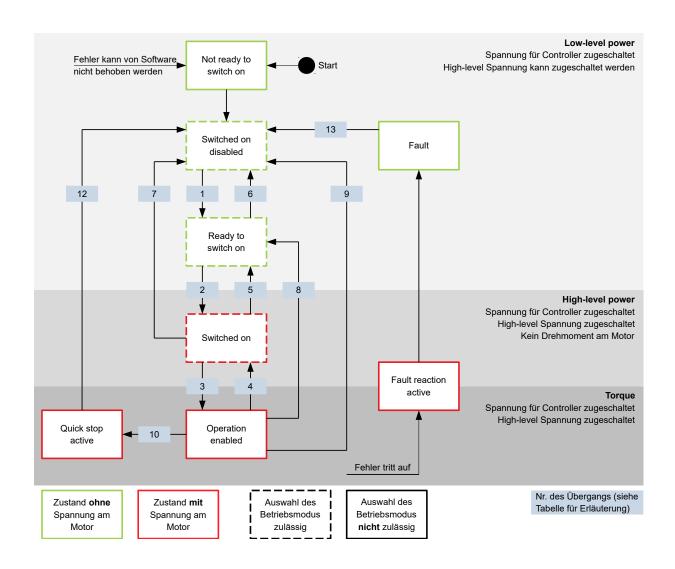
Das Bit 0 im 3202_h muss gesetzt sein.

5.2 CiA 402 Power State Machine

5.2.1 Zustandsmaschine

CiA 402

Um die Steuerung betriebsbereit zu schalten, ist es notwendig, eine Zustandsmaschine (*State Machine*) zu durchlaufen. Diese ist im *CANopen-Standard 402* definiert. Zustandsänderungen werden im Objekt **6040**_h (Controlword) angefordert. Der tatsächliche Zustand der Zustandsmaschine lässt sich aus dem Objekt **6041**_h (Statusword) entnehmen.


Controlword

Zustandsänderungen werden über Objekt 6040_h (Controlword) angefordert.

Zustandsübergänge

Das Diagramm zeigt die möglichen Zustandsübergänge.

In der nachfolgenden Tabelle sind die Bit-Kombinationen für das Controlword aufgelistet, die zu den entsprechenden Zustandsübergängen führen. Ein X entspricht dabei einem nicht weiter zu berücksichtigenden Bit-Zustand. Einzige Ausnahme ist das Rücksetzen des Fehlers (Fault reset): Der Übergang wird nur durch steigende Flanke des Bits angefordert.

Kommando	Bit im O	Bit im Objekt 6040 _h				Übergang
	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0	
Shutdown	0	Х	1	1	0	1, 5, 8
Switch on	0	0	1	1	1	2
Disable voltage	0	Χ	Χ	0	Χ	6, 7, 9, 12
Quick stop	0	Χ	0	1	Χ	10
Disable operation	0	0	1	1	1	4
Enable operation	0	1	1	1	1	3
Fault reset		X	X	X	X	13

Statusword

In der nachfolgenden Tabelle sind die Bitmasken aufgelistet, die den Zustand der Steuerung aufschlüsseln.

Statusword (6041 _h)	Zustand
xxxx xxxx x0xx 0000	Not ready to switch on
xxxx xxxx x1xx 0000	Switch on disabled
xxxx xxxx x01x 0001	Ready to switch on
xxxx xxxx x01x 0011	Switched on
xxxx xxxx x01x 0111	Operation enabled
xxxx xxxx x00x 0111	Quick stop active
xxxx xxxx x0xx 1111	Fault reaction active
xxxx xxxx x0xx 1000	Fault

Die Steuerung erreicht nach Einschalten und erfolgreichem Selbsttest den Zustand Switch on disabled.

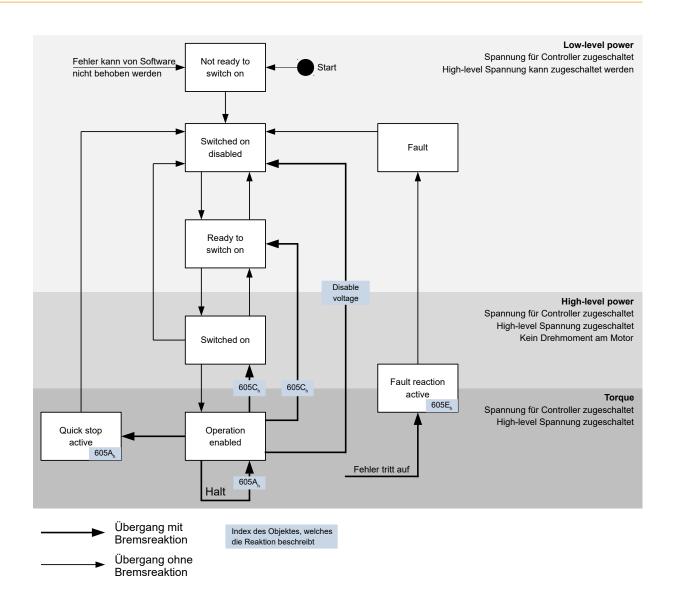
Hinweis

Tritt ein nicht behebbarer Fehler auf, wechselt die Steuerung in den Zustand Not ready to switch on und verbleibt dort.

Betriebsmodus

Der Betriebsmodus wird im Objekt **6060**_h eingestellt. Der tatsächlich aktive Betriebsmodus wird im **6061**_h angezeigt.

Die Einstellung oder Änderung des Betriebsmodus ist jederzeit möglich.


5.2.2 Verhalten beim Verlassen des Zustands Operation enabled

Bremsreaktionen

Beim Verlassen des Zustands *Operation enabled* lassen sich unterschiedliche Bremsreaktionen programmieren.

Die nachfolgende Grafik zeigt eine Übersicht der Bremsreaktionen.

Quick stop active

Übergang in den Zustand Quick stop active (quick stop option):

In diesem Fall wird die in Objekt **605A**_h hinterlegte Aktion ausgeführt (siehe nachfolgende Tabelle).

Wert in Objekt 605A _h	Beschreibung
-32768 bis -1	Reserviert
0	Soforthalt
1	Abbremsen mit slow down ramp (Bremsbeschleunigung je nach Betriebsmodus) und anschließendem Zustandswechsel in Switch on disabled
2	Abbremsen mit <i>quick stop ramp</i> und anschließendem Zustandswechsel in Switch on disabled
3 bis 32767	Reserviert

Ready to switch on

Übergang in den Zustand Ready to switch on (shutdown option):

In diesem Fall wird die in Objekt 605B_h hinterlegte Aktion ausgeführt (siehe nachfolgende Tabelle).

Wert in Objekt 605B _h	Beschreibung
-32768 bis -1	Reserviert
0	Soforthalt
1	Abbremsen mit <i>slow down ramp</i> (Bremsbeschleunigung je nach Betriebsmodus) und anschließendem Zustandswechsel in <i>Switch on disabled</i>
2 bis 32767	Reserviert

Switched on

Übergang in den Zustand Switched on (disable operation option):

In diesem Fall wird die in Objekt 605C_h hinterlegte Aktion ausgeführt (siehe nachfolgende Tabelle).

Wert in Objekt 605C _h	Beschreibung
-32768 bis -1	Reserviert
0	Soforthalt
1	Abbremsen mit slow down ramp (Bremsbeschleunigung je nach Betriebsmodus) und anschließendem Zustandswechsel in Switch on disabled
2 bis 32767	Reserviert

Halt

Das Bit ist gültig in folgenden Modi:

- Profile Position
- Velocity
- Profile Velocity
- Profile Torque
- Interpolated Position Mode

Beim Setzen des Bit 8 in Objekt **6040**_h (Controlword) wird die in **605D**_h hinterlegte Reaktion ausgeführt (siehe nachfolgende Tabelle):

Wert in Objekt 605D _h	Beschreibung
-32768 bis 0	Reserviert
1	Abbremsen mit <i>slow down ramp</i> (Bremsbeschleunigung je nach Betriebsmodus)
2	Abbremsen mit <i>quick stop ramp</i> (Bremsbeschleunigung je nach Betriebsmodus)
3 bis 32767	Reserviert

Fault

Fehlerfall (fault):

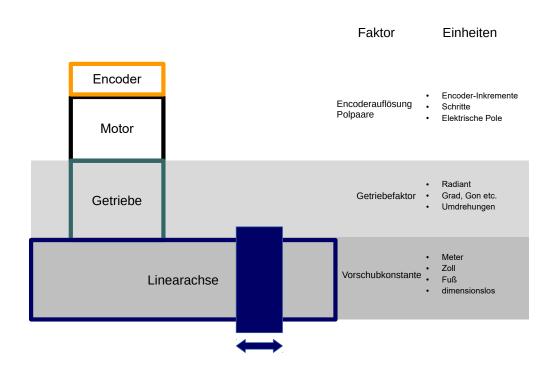
Sollte ein Fehler auftreten, wird der Motor abgebremst, wie es in Objekt 605E_h hinterlegt ist.

Wert in Objekt 605E _h	Beschreibung	
-32768 bis -1	Reserviert	
0	Soforthalt	
1	Abbremsen mit <i>slow down ramp</i> (Bremsbeschleunigung je nach Betriebsart)	
2	Abbremsen mit <i>quick stop ramp</i> (Bremsbeschleunigung je nach Betriebsart)	
3 bis 32767	Reserviert	

Schlepp-/Schlupffehler

Sollte ein Schlepp- oder Schlupffehler auftreten, wird der Motor abgebremst, wie es in Objekt **3700**_h hinterlegt ist.

Wert	Beschreibung
-32768 bis -1	Reserviert
0	Soforthalt
1	Abbremsen mit <i>slow down ramp</i> (Bremsbeschleunigung je nach Betriebsart)
2	Abbremsen mit quick stop ramp (Bremsbeschleunigung je nach Betriebsart)
3 bis 32767	Reserviert


Sie können die Fehlerüberwachung deaktivieren, indem Sie das Objekt 6065_h auf den Wert "-1" (FFFFFFFF $_h$), bzw. das Objekt $60F8_h$ auf den Wert "7FFFFFFF $_h$ " setzen.

5.3 Benutzerdefinierte Einheiten

Die Steuerung bietet Ihnen die Möglichkeit, benutzerdefinierte Einheiten einzustellen. Damit lassen sich die entsprechenden Parameter z. B. direkt in Grad [°], Millimeter [mm], usw. setzen und auslesen.

Sie können auch, entsprechend den mechanischen Gegebenheiten, eine **Getriebeübersetzung** und/ oder eine **Vorschubkonstante** einstellen.

Hinweis

Wertänderungen aller Objekte, die in diesem Kapitel beschrieben werden, werden im Zustand Operation enabled der CiA 402 Power State Machine nicht sofort angewendet. Der Zustand Operation enabled muss dazu verlassen werden.

5.3.1 Einheiten

Es werden sowohl Einheiten des internationalen Einheitensystems (*SI*) als auch einige spezifische Einheiten unterstützt. Ebenfalls möglich ist die Angabe einer Zehnerpotenz als Faktor.

In der nachfolgenden Tabelle sind alle unterstützen Einheiten für die Position und deren Werte für 60A8_h (Positionseinheit) bzw. 60A9_h (Geschwindigkeitseinheit) aufgelistet. Abhängig von der verwendeten Einheit wird die Vorschubkonstante (6092_h) und/oder die Getriebeübersetzung (6091_h) berücksichtigt.

Name	Einheitenzeichen	Wert	6091 _h	6092 _h	Beschreibung
metre	m	01 _h	ja	ja	Meter
inch	in	C1 _h	ja	ja	Zoll (=0,0254 m)
foot	ft	C2 _h	ja	ja	Fuß (=0,3048 m)
grade	g	40 _h	ja	nein	Gon (Winkeleinheit, 400 entsprechen 360°)
radian	rad	10 _h	ja	nein	Radiant
degree	0	41 _h	ja	nein	Grad
arcminute	'	42 _h	ja	nein	Winkelminute (60'=1°)
arcsecond	l "	43 _h	ja	nein	Winkelsekunde (60"=1')

Name	Einheitenzeichen	Wert	6091 _h	6092 _h	Beschreibung
mechanica revolution	I	B4 _h	ja	nein	Umdrehung
encoder increment		B5 _h	nein	nein	Encoder-Inkremente
step		AC _h	nein	nein	Schritte. Bei 2-phasigen Schrittmotoren entspricht die Anzahl der Polpaare (2030 _h) multipliziert mit 4 einer Umdrehung. Bei 3-phasigen BLDC-Motoren entspricht die Anzahl der Polpaare (2030 _h) multipliziert mit 6 einer Umdrehung.
electrical pole		C0 _h	nein	nein	Elektrische Pole. Bei einem Schrittmotor, der z.B. 50 Polpaare (2030 _h) hat, entspricht die Einheit 1/50 einer Umdrehung.
dimensionle	SS	00_{h}	ja	ja	dimensionslose Längeneinheit

In der nachfolgenden Tabelle sind alle unterstützen Einheiten für die Zeit und deren Werte für **60A9**_h (**Geschwindigkeitseinheit**) aufgelistet:

Name	Einheitenzeichen	Wert	Beschreibung
second	S	03 _h	Sekunde
minute	min	47 _h	Minute
hour	h	48 _h	Stunde
day	d	49 _h	Tag
year	а	4A _h	Jahr (=365,25 Tage)

In der nachfolgenden Tabelle sind die möglichen Exponenten und deren Werte für **60A8**_h (**Positionseinheit**), bzw. **60A9**_h (**Geschwindigkeitseinheit**) aufgelistet:

Faktor	Exponent	Wert
10 ⁶ 10 ⁵	6	06 _h
10 ⁵	5	05 _h
10 ¹	1	01 _h
10 ¹ 10 ⁰ 10 ⁻¹	0	00 _h
10 ⁻¹	-1	FF _h
10 ⁻⁵	-5	FB _h
10 ⁻⁵	-6	FA _h

5.3.2 Encoderauflösung

Die physikalische Auflösung des verwendeten Encoders/Sensors berechnet sich aus den Encoder-Inkrementen ($608F_h$:1_h (Encoder Increments)) pro Motorumdrehungen ($608F_h$:2_h (Motor Revolutions)):

Auflösung Positionsencoder =
$$\frac{\text{Encoder-Inkremente (608F}_h:01)}{\text{Motorumdrehungen (608F}_h:02)}$$

5.3.3 Getriebeübersetzung

Die Getriebeübersetzung berechnet sich aus Motorumdrehungen (**6091**_h:1 (Motor Revolutions)) pro Achsenumdrehung (**6091**_h:2 (Shaft Revolutions)) wie folgt:

Getriebeübersetzung =
$$\frac{\text{Motorumdrehung (6091}_{\text{h}}:1)}{\text{Achsenumdrehung (6091}_{\text{h}}:2)}$$

5.3.4 Vorschubkonstante

Die Vorschubkonstante berechnet sich aus dem Vorschub (**6092**_h:1 (Feed) pro Umdrehung der Abtriebsachse (**6092**_h:2 (Shaft Revolutions) wie folgt:

Die Vorschubkonstante ist zur Angabe der Spindelsteigung bei einer Linearachse nützlich und wird verwendet, wenn die Einheit auf Längenmaßen basiert oder wenn diese dimensionslos ist.

5.3.5 Berechnungsformeln für Benutzereinheiten

Positionseinheit

Das Objekt 60A8_h enthält:

- Bits 16 bis 23: die Positionseinheit (siehe Kapitel Einheiten)
- Bits 24 bis 31: den Exponenten einer Zehnerpotenz (siehe Kapitel Einheiten)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Е	xpone	nt eine	er Zehi	nerpote	enz					Eir	heit			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserviert (00h)									re	servier	t (00h))		

Beispiel

Wird **60A8**_h mit dem Wert "FF410000_h" beschrieben (Bits 16-23=41_h und Bits 24-31=FF_h), wird die Einheit auf *Zehntelgrad* eingestellt (Werkseinstellung).

Bei einer relativen Zielposition (607A_h) von 3600 fährt der Motor genau eine mechanische Umdrehung, wenn die **Getriebeübersetzung** 1:1 ist. Die **Vorschubkonstante** spielt in diesem Fall keine Rolle.

Beispiel

Wird **60A8**_h mit dem Wert "FD010000_h" beschrieben (Bits 16-23=01_h und Bits 24-31=FD_h(=-3)), wird die Einheit auf *Millimeter* eingestellt.

Bei einer relativen Zielposition (607A_h) von 1 fährt der Motor genau eine mechanische Umdrehung (wenn die **Getriebeübersetzung** und **Vorschubkonstante** 1:1 sind).

Wird die **Vorschubkonstante** entsprechend der Spindelsteigung einer Linearachse eingestellt, dreht der Motor so weit, dass ein Vorschub von 1 mm erreicht wird.

Geschwindigkeitseinheit

Das Objekt 60A9_h enthält:

- Bits 8 bis 15: die Zeiteinheit (siehe Kapitel **Einheiten**)
- Bits 16 bis 23: die Positionseinheit (siehe Kapitel Einheiten)
- Bits 24 bis 31: den Exponenten einer Zehnerpotenz (siehe Kapitel Einheiten)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Е	xpone	nt eine	er Zehi	nerpote	enz				Pos	sitionse	einheit			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Zeiteinheit									res	servier	t (00h)			

Beispiel

Wird **60A9**_h mit dem Wert "00B44700_h" beschrieben (Bits 8-15=00_h, Bits 16-23=B4_h und Bits 24-31=47_h), wird die Einheit auf *Umdrehungen pro Minute* eingestellt (Werkseinstellung).

Beispiel

Wird das $60A9_h$ mit dem Wert "FD010300_h" beschrieben (Bits 8-15=FD_h(=-3), Bits 16-23=01_h und Bis 24-31=03_h), wird die Einheit auf *Millimeter pro Sekunde* eingestellt.

Hinweis

Die Geschwindigkeitseinheit im Modus **Velocity** ist auf *Umdrehungen pro Minute* voreingestellt. Sie können die Einheit nur über den **604Ch VI Dimension Factor** umstellen.

Umrechnungsfaktor für die Geschwindigkeitseinheit

Sie können einen zusätzlichen Faktor für die Geschwindigkeitseinheit einstellen, damit z.B. eine Einheit von 1/3 Umdrehungen/Minute möglich ist. Der Faktor n errechnet sich aus Faktor für Zähler (6096_h:01_h) geteilt durch Faktor für Nenner (6096_h:02_h).

$$n_{\text{Geschwindigkeitseinheit}} = \frac{6096_{\text{h}}:01}{6096_{\text{h}}:02}$$

Beschleunigungseinheit

Die Beschleunigungseinheit ist Geschwindigkeitseinheit pro Sekunde.

Umrechnungsfaktor für die Beschleunigungseinheit

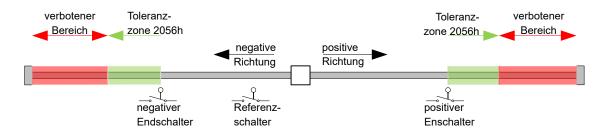
Der Faktor n für die Beschleunigungseinheit errechnet sich aus Zähler (**6097**_h:01_h) geteilt durch Nenner (**6097**_h:02_h).

$$n_{\text{Beschleunigungseinheit}} = \frac{6097_{\text{h}}:01}{6097_{\text{b}}:02}$$

Ruckeinheit

Die Ruckeinheit ist Beschleunigungseinheit pro Sekunde.

Umrechnungsfaktor für den Ruck


Der Faktor n für den Ruck errechnet sich aus Zähler (60A2_h:01_h) geteilt durch Nenner (60A2_h:02_h).

$$n_{Ruckeinheit} = \frac{60A2_{h}:01}{60A2_{L}:02}$$

5.4 Begrenzung des Bewegungsbereichs

Die digitalen Eingänge können als Endschalter verwendet werden, im Kapitel **Digitale Eingänge** wird beschrieben, wie Sie diese Funktion der Eingänge aktivieren. Die Steuerung unterstützt auch Software-Endschalter.

5.4.1 Toleranzbänder der Endschalter

Das vorherige Bild stellt die Aufteilung der Toleranzbänder neben den Endschaltern dar:

- Die Toleranzzone beginnt unmittelbar nach dem Endschalter. In dieser Zone kann frei gefahren werden. Die Länge der Zone kann in dem Objekt **2056**_h eingestellt werden.
- Falls der Motor in den verbotenen Bereich fährt, löst die Steuerung einen Soforthalt aus und es wird in den Zustand Fault gewechselt, siehe auch Zustandsübergänge.

5.4.2 Software-Endschalter

Die Steuerung berücksichtigt Software-Endschalter ($607D_h$ (Software Position Limit)). Zielpositionen ($607A_h$) werden durch $607D_h$ limitiert, die absolute Zielposition darf nicht größer sein als die Grenzen in $607D_h$. Sollte sich der Motor beim Einrichten der Endschalter außerhalb des zulässigen Bereichs befinden, werden nur Fahrbefehle in Richtung des zulässigen Bereichs angenommen.

5.5 Zykluszeiten

Die Steuerung arbeitet mit einer Zykluszeit vom 1 ms. Das bedeutet, dass Daten jeweils alle 1 ms verarbeitet werden, mehrfache Änderungen eines Wertes (z.B. Wert eines Objektes oder Pegel an einem digitalen Eingang) innerhalb einer ms können nicht erfasst werden.

In der nachfolgenden Tabelle finden Sie eine Übersicht der Zykluszeiten der verschiedenen Prozesse.

Task	Zykluszeit
Applikation	1 ms
NanoJ Applikation	1 ms
Stromregler	31,25 µs (32 KHz)
Geschwindigkeitsregler	250 μs (4 KHz)
Positionsregler	1 ms

6 Betriebsmodi

6.1 Profile Position

6.1.1 Übersicht

Beschreibung

Der *Profile Position Mode* dient dazu, Positionen relativ zur letzten Zielposition oder absolut zur letzten Referenzposition anzufahren. Während der Bewegung werden Grenzwerte für die Geschwindigkeit, Anfahr- und Bremsbeschleunigung und Rucke berücksichtigt.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

Aktivierung

Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "1" gesetzt werden (siehe "**CiA 402 Power State Machine**").

Controlword

Folgende Bits im Objekt 6040_h (Controlword) haben eine gesonderte Funktion:

- Bit 4 startet einen Fahrauftrag. Dieser wird bei einem Übergang von "0" nach "1" übernommen. Eine Ausnahme besteht, wenn es von einem anderen Betriebsmodus nach *Profile Position* gewechselt wird: Ist das Bit 4 bereits gesetzt, muss es nicht auf "0" und wieder auf "1" gesetzt werden, damit der Fahrauftrag gestartet wird.
- Bit 5: Ist dieses Bit auf "1" gesetzt, wird ein durch Bit 4 ausgelöster Fahrauftrag sofort ausgeführt. Ist es auf "0" gesetzt, wird der gerade ausgeführte Fahrauftrag zu Ende gefahren und erst im Anschluss der nächste Fahrauftrag gestartet.
- Bit 6: Bei "0" ist die Zielposition (607A_h) absolut und bei "1" ist die Zielposition relativ. Die Referenzposition ist abhängig von den Bits 0 und 1 des Objekts 60F2_h.
- Bit 8 (Halt): Ist dieses Bit auf "1" gesetzt, bleibt der Motor stehen. Bei einem Übergang von "1" auf "0" beschleunigt der Motor mit der eingestellten Startrampe bis zur Zielgeschwindigkeit. Bei einem Übergang von "0" auf "1" bremst der Motor ab und bleibt stehen. Die Bremsbeschleunigung ist dabei abhängig von der Einstellung des "Halt Option Code" im Objekt 605Dh.
- Bit 9 (Change on setpoint): Ist dieses Bit gesetzt, wird die Geschwindigkeit erst beim Erreichen der ersten Zielposition geändert. Das bedeutet, dass vor Erreichen des ersten Ziels keine Bremsung durchgeführt wird, da der Motor auf dieser Position nicht stehen bleiben soll.

Control	word 6040	h
Bit 9	Bit 5	Definition
X	1	Die neue Zielposition wird sofort angefahren.
0	0	Das Positionieren wird erst vollständig abgeschlossen, bevor die nächste Zielposition mit den neuen Limitierungen angefahren wird.
1	0	Die momentane Zielposition wird nur durchfahren, danach wird die neue Zielposition mit den neuen Werten angefahren.

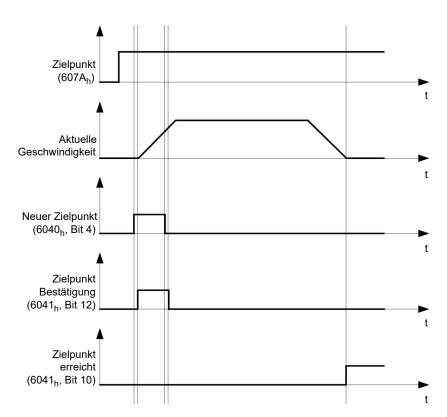
Siehe dazu das Bild in "Setzen von Fahrbefehlen".

Hinweis

Das Bit 9 im Controlword wird ignoriert, wenn die Rampengeschwindigkeit im Zielpunkt unterschritten wird. In diesem Fall müsste die Steuerung zurücksetzen und Anlauf nehmen, um die Vorgabe zu erreichen.

Statusword

Folgende Bits im Objekt 6041_h (Statusword) haben eine gesonderte Funktion:

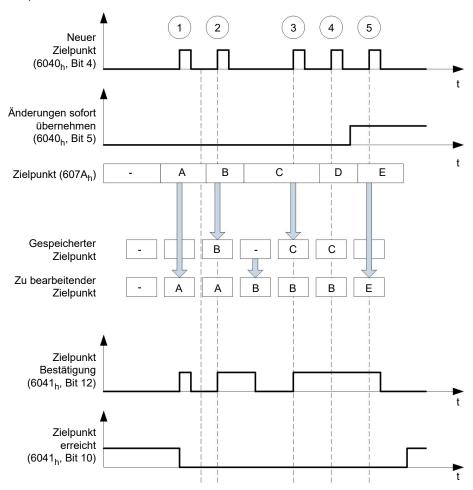

- Bit 10 (Target Reached): Dieses Bit ist auf "1" gesetzt, wenn das letzte Ziel erreicht wurde und der Motor eine vorgegebene Zeit (6068_h) innerhalb eines Toleranzfensters (6067_h) steht.
- Bit 11: Limit überschritten: Die Sollposition über- oder unterschreitet die in 607D_h eingegebenen Grenzwerte.
- Bit 12 (Set-point acknowledge): Dieses Bit bestätigt den Erhalt eines neuen und gültigen Zielpunktes. Es wird synchron zu dem Bit "New set-point" im Controlword gesetzt und zurückgesetzt.
 - Eine Ausnahme besteht, wenn eine neue Fahrt gestartet wird, während eine andere noch nicht abgeschlossen ist, und die nächste Fahrt erst nach dem Abschluss der ersten Fahrt ausgeführt werden soll. In diesem Fall wird das Bit erst zurückgesetzt, wenn der Befehl angenommen wurde und die Steuerung bereit ist, neue Fahrbefehle auszuführen. Wird ein neuer Fahrauftrag gesendet, obwohl dieses Bit noch gesetzt ist, wird der neueste Fahrauftrag ignoriert.
 - Das Bit wird nicht gesetzt, wenn eine der folgenden Bedingungen erfüllt ist:
 - Die neue Zielposition kann unter Einhaltung aller Randbedingungen nicht mehr erreicht werden.
 - Es wird bereits eine Zielposition angefahren und zudem ist bereits eine Zielposition vorgegeben. Eine neue Zielposition lässt sich erst vorgeben, nachdem die aktuelle Positionierung abgeschlossen ist.
- Bit 13 (Following Error): Dieses Bit wird im Closed Loop-Betrieb gesetzt, wenn der Schleppfehler größer als die eingestellten Grenzen ist (6065_h (Following Error Window) und 6066_h (Following Error Time Out)).

6.1.2 Setzen von Fahrbefehlen

Fahrbefehl

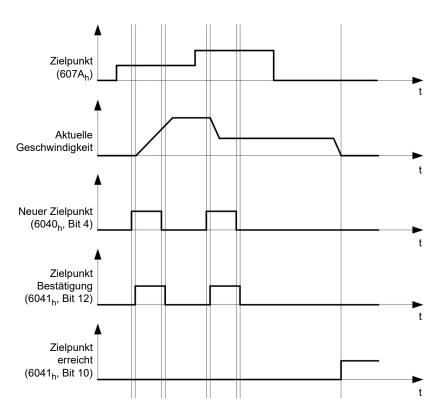
In Objekt **607A**_h (Target Position) wird die neue Zielposition in Benutzereinheiten angegeben (siehe **Benutzerdefinierte Einheiten**). Anschließend wird mit dem Setzen von Bit 4 im Objekt **6040**_h (Controlword) der Fahrbefehl ausgelöst. Wenn die Zielposition gültig ist, antwortet die Steuerung mit Bit 12 im Objekt **6041**_h (Statusword) und beginnt die Positionierfahrt. Sobald die Position erreicht ist, wird im Statusword das Bit 10 auf "1" gesetzt.

Die Steuerung kann das Bit 4 im Objekt **6040**_h (Controlword) auch selbstständig zurücksetzen. Das wird mit den Bits 4 und 5 des Objektes **60F2**_h eingestellt.

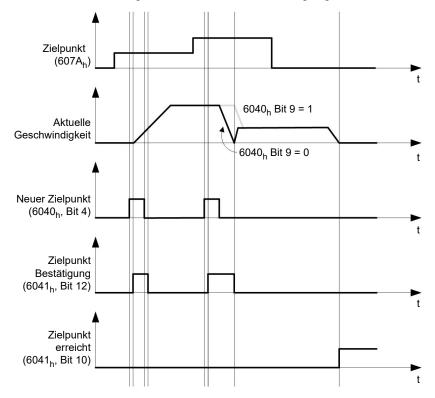

Weitere Fahrbefehle

Bit 12 im Objekt **6041**_h (Statusword, Set-point acknowledge) fällt auf "0", falls ein weiterer Fahrbefehl zwischengespeichert werden kann (siehe Zeitpunkt 1 im nachfolgenden Bild). Solange eine Zielposition angefahren wird, lässt sich eine zweite Zielposition vorbereitend an die Steuerung übergeben. Dabei können alle Parameter - wie Geschwindigkeit, Beschleunigung, Bremsbeschleunigung usw. - neu gesetzt werden (Zeitpunkt 2). Ist der Zwischenspeicher wieder leer, lässt sich der nächste Zeitpunkt einreihen (Zeitpunkt 3).

Sollte der Zwischenspeicher schon voll sein, wird ein neuer Zielpunkt ignoriert (Zeitpunkt 4). Wird Bit 5 im Objekt **6040**_h (Controlword, Bit: "Change Set-Point Immediately") gesetzt, arbeitet die Steuerung ohne den Zwischenspeicher, neue Fahrbefehle werden direkt umgesetzt (Zeitpunkt 5).

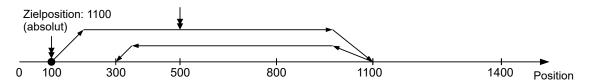

Zeitpunkte

Übergangsprozedur für zweite Zielposition

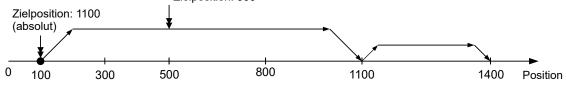

Die folgende Grafik zeigt die Übergangsprozedur für die zweite Zielposition, während die erste Zielposition angefahren wird. In dieser Abbildung ist Bit 5 von Objekt **6040**_h (Controlword) auf "1" gesetzt, der neue Zielwert wird demnach sofort übernommen.

Möglichkeiten zum Anfahren einer Zielposition

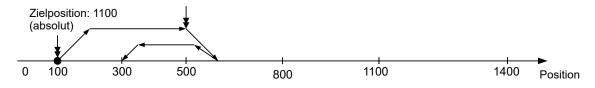
Ist Bit 9 in Objekt **6040**_h (Controlword) gleich "0", wird die momentane Zielposition erst vollständig angefahren. In diesem Beispiel ist die Endgeschwindigkeit (**6082**_h) der ersten Zielposition gleich Null. Wird Bit 9 auf "1" gesetzt, wird die Profilgeschwindigkeit (**6081**_h) gehalten, bis die Zielposition erreicht wurde; erst ab dann gelten die neuen Randbedingungen.

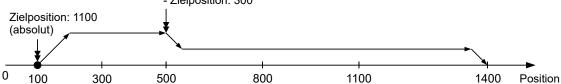

Mögliche Kombinationen von Fahrbefehlen

Um eine bessere Übersicht für die Fahrbefehle zu bekommen, werden in diesem Kapitel Kombinationen von Fahrbefehlen aufgelistet und dargestellt.

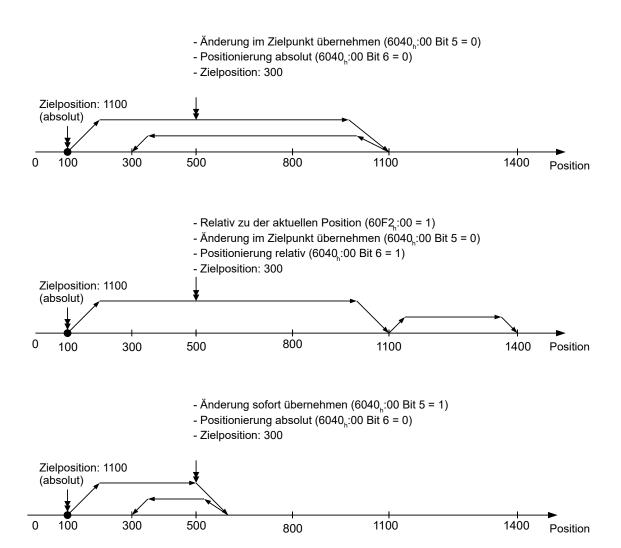


Die nachfolgenden Bilder setzen voraus:

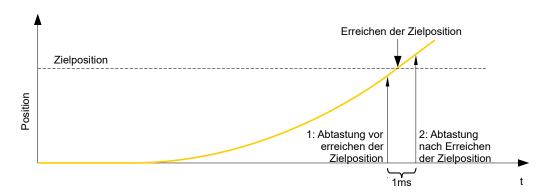

- Ein Doppelpfeil markiert einen neuen Fahrbefehl.
- Der erste Fahrbefehl am Start ist immer ein absoluter Fahrbefehl auf die Position 1100.
- Die zweite Bewegung wird mit einer niedrigeren Geschwindigkeit durchgeführt, um einen übersichtlicher dargestellten Graphen zu erhalten.
 - Änderung im Zielpunkt übernehmen (6040_b :00 Bit 5 = 0)
 - Positionierung absolut (6040, :00 Bit 6 = 0)
 - Zielposition: 300


- Relativ zu der vorhergehenden Zielposition (60F2:00 = 0)
- Änderung im Zielpunkt übernehmen (6040,:00 Bit 5 = 0)
- Positionierung relativ (6040,:00 Bit 6 = 1)
- Zielposition: 300

- Änderung sofort übernehmen (6040_h :00 Bit 5 = 1)
- Positionierung absolut (6040_b:00 Bit 6 = 0)
- Zielposition: 300



- Relativ zu der vorhergehenden Zielposition (60F2:00 = 0)
- Änderung sofort übernehmen (6040_h:00 Bit 5 = 1)
- Positionierung relativ (6040 :00 Bit 6 = 1)
- Zielposition: 300



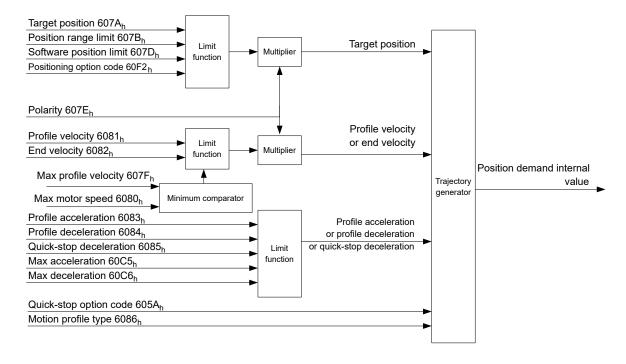
61

6.1.3 Genauigkeitsverlust bei Relativbewegungen

Beim Verketten von relativen Bewegungen kann es zu einem Verlust an Genauigkeit kommen, sollte die Endgeschwindigkeit nicht auf Null gesetzt sein. Die folgende Grafik zeigt, aus welchen Grund.

Die aktuelle Position wird einmal pro Millisekunde abgetastet. Es kann passieren, dass die Zielposition zwischen zwei Abtastungen erreicht wird. Im Falle einer Endgeschwindigkeit ungleich Null wird die Abtastung nach Erreichen der Zielposition als Grundlage für die nachfolgende Bewegung als Offset herangezogen. Demzufolge kann die nachfolgende Bewegung etwas weiter gehen, als erwartet.

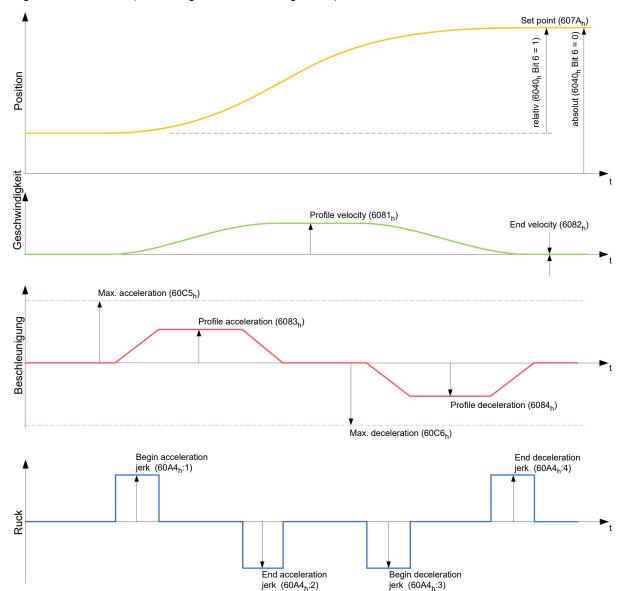
6.1.4 Randbedingungen für eine Positionierfahrt


Objekteinträge

Die Randbedingungen für die gefahrene Position lassen sich in folgenden Einträgen des Objektverzeichnisses einstellen:

- **607A**_h (Target Position): vorgesehene Zielposition
- 607D_h (Software Position Limit): Definition der Endanschläge (siehe Kapitel Software-Endschalter)
- 607C_h (Home Offset): Gibt die Differenz zwischen Null-Position der Steuerung und dem Referenzpunkt der Maschine in benutzerdefinierten Einheiten an. (siehe "Homing")
- **607B**_h (Position Range Limit): Grenzen einer Modulo-Operation zur Nachbildung einer endlosen Rotationsachse
- 607E_h (Polarity): Drehrichtung
- 6081_h (Profile Velocity): maximale Geschwindigkeit, mit der die Position angefahren werden soll
- 6082_h (End Velocity): Geschwindigkeit beim Erreichen der Zielposition
- 6083_h (Profile Acceleration): gewünschte Anfahrbeschleunigung
- 6084_h (Profile deceleration): gewünschte Bremsbeschleunigung
- **6085**_h (Quick Stop Deceleration): Nothalt-Bremsbeschleunigung im Falle des Zustandes "Quick stop active" der "CiA 402 Power State machine"
- 6086_h (Motion Profile Type): Typ der zu fahrenden Rampe; ist der Wert "0", wird der Ruck nicht limitiert, ist der Wert "3", werden die Werte von 60A4_h:1_h- 4_h als Limitierungen des Rucks gesetzt.
- 60C5_h (Max Acceleration): die maximale Beschleunigung, die beim Anfahren der Endposition nicht überschritten werden darf
- 60C6_h (Max Deceleration): die maximale Bremsbeschleunigung, die beim Anfahren der Endposition nicht überschritten werden darf
- 60A4_h (Profile Jerk), Subindex 01_h bis 04_h: Objekte zur Beschreibung der Grenzwerte für den Ruck.
- Die Geschwindigkeit wird durch 607F_h (Max Profile Velocity) und 6080_h (Max Motor Speed) begrenzt, der kleinere Wert wird als Grenze herangezogen.
- 60F2_h (Positioning Option Code): definiert das Positionierverhalten

Objekte für die Positionierfahrt


Die nachfolgende Grafik zeigt die beteiligten Objekte für die Randbedingungen der Positionierfahrt.

Parameter für die Zielposition

Nachfolgende Grafik zeigt eine Übersicht über die Parameter, die für das Anfahren einer Zielposition angewendet werden (Abbildung nicht maßstabsgerecht).

6.1.5 Ruck-begrenzter und nicht ruck-begrenzter Modus

Beschreibung

Es wird grundsätzlich zwischen den Modi "ruck-begrenzt" und "nicht ruck-begrenzt" unterschieden.

Ruck-begrenzter Modus

Eine ruck-begrenzte Positionierung lässt sich erreichen, indem das Objekt **6086**_h auf "3" gesetzt wird. Damit werden die Einträge für die Rucke im Subindex :1_h - 4_h vom Objekt **60A4** gültig.

Nicht ruck-begrenzter Modus

Eine "nicht ruck-begrenzte" Rampe wird gefahren, wenn der Eintrag im Objekt **6086**_h auf "0" gesetzt wird (Standard-Einstellung).

6.2 Velocity

6.2.1 Beschreibung

Dieser Modus betreibt den Motor unter Vorgabe einer Zielgeschwindigkeit ähnlich einem Frequenzumrichter. Im Gegensatz zum *Profile Velocity Mode* erlaubt dieser Modus nicht, ruckbegrenzte Rampen auszuwählen.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

6.2.2 Aktivierung

Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "2" gesetzt werden (siehe **CiA 402 Power State Machine**).

6.2.3 Controlword

Folgende Bits im Objekt 6040_h (Controlword) haben eine gesonderte Funktion:

Bit 8 (Halt): Ist dieses Bit auf "1" gesetzt bleibt der Motor stehen. Bei einem Übergang von "1" auf
"0" beschleunigt der Motor mit der eingestellten Beschleunigungsrampe bis zur Zielgeschwindigkeit.
Bei einem Übergang von "0" auf "1" bremst der Motor entsprechend der Bremsrampe ab und bleibt
stehen.

6.2.4 Statusword

Folgende Bits im Objekt **6041**_h (Statusword) haben eine gesonderte Funktion:

• Bit 11: Limit überschritten: Die Zielgeschwindigkeit über- oder unterschreitet die eingegebenen Grenzwerte.

6.2.5 Objekteinträge

Folgende Objekte sind zur Steuerung dieses Modus erforderlich:

• 604C_h (Dimension Factor):

Hier wird die Einheit der Geschwindigkeitsangaben für die nachfolgenden Objekte festgelegt. Der Subindex 1 enthält den Nenner (Multiplikator) und der Subindex 2 den Zähler (Divisor), mit dem interne Geschwindigkeitsangaben in Umdrehungen pro Minute verrechnet werden. Wird z.B. Subindex 1 auf den Wert "60" und Subindex 2 auf den Wert "1" eingestellt, erfolgt die Geschwindigkeitsangabe in Umdrehungen pro Sekunde (60 Umdrehungen pro 1 Minute).

• **6042**_h: Target Velocity.

Hier wird die Zielgeschwindigkeit in benutzerdefinierten Einheiten eingestellt.

6048_h: Velocity Acceleration

Dieses Objekt definiert die Beschleunigung. Der Subindex 1 enthält dabei die Geschwindigkeitsänderung, der Subindex 2 die zugehörige Zeit in Sekunden. Beides zusammen wird als Beschleunigung verrechnet:

VL velocity acceleration =
$$\frac{\text{Delta speed (6048}_{\text{h}}:1)}{\text{Delta time (6048}_{\text{h}}:2)}$$

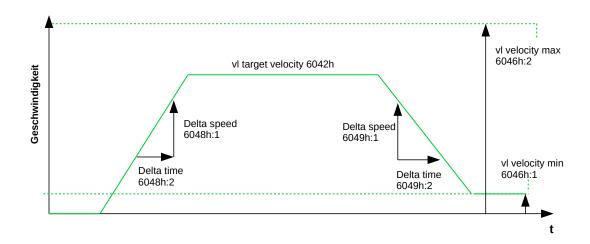
• **6049**_h (Velocity Deceleration):

Dieses Objekt definiert die Verzögerung (Bremsrampe). Die Subindizes sind dabei so aufgebaut, wie im Objekt **6048**_h beschrieben, die Geschwindigkeitsänderung ist mit positiven Vorzeichen anzugeben.

6046_h (Velocity Min Max Amount):

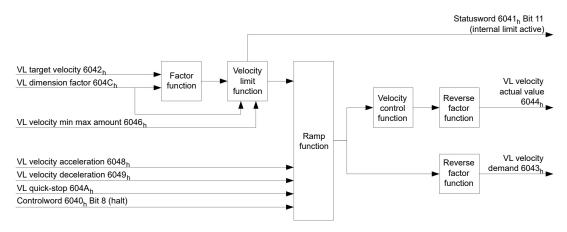
In diesem Objekt werden die Limitierungen der Zielgeschwindigkeiten angegeben.

In $6046_h:1_h$ wird die minimale Geschwindigkeit eingestellt. Unterschreitet die Zielgeschwindigkeit (6042_h) die Minimalgeschwindigkeit, wird der Wert auf die Minimalgeschwindigkeit $6046_h:1_h$ begrenzt.


In 6046_h :2_h wird die maximale Geschwindigkeit eingestellt. Überschreitet die Zielgeschwindigkeit (6042_h) die Maximalgeschwindigkeit, wird der Wert auf die Maximalgeschwindigkeit 6046_h :2_h begrenzt.

- 604A_h (Velocity Quick Stop):
 Mit diesem Objekt kann die Schnellstop-Rampe eingestellt werden. Die Subindizes 1 und 2 sind dabei identisch wie bei Objekt 6048_h beschrieben.
- 6080_h (Max Motor Speed): maximale Geschwindigkeit

Folgende Objekte können zur Kontrolle der Funktion genutzt werden:


- 6043_h (VI Velocity Demand)
- **6044**_h (VI Velocity Actual Value)

Geschwindigkeiten im Velocity Mode

Objekte für den Velocity Mode

Der Rampengenerator folgt der Zielgeschwindigkeit unter Einhaltung der eingestellten Geschwindigkeits- und Beschleunigungsgrenzen. Solange eine Begrenzung aktiv ist, wird das Bit 11 im Objekt **6041**_h gesetzt (internal limit active).

6.3 Profile Velocity

6.3.1 Beschreibung

Dieser Modus betreibt den Motor im Geschwindigkeitsmodus mit erweiterten (ruck-limitierten) Rampen. Im Gegensatz zum *Velocity Mode* (siehe "**Velocity**") wird bei diesem Modus im **Statusword** angezeigt, ob die Zielgeschwindigkeit erreicht ist.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

6.3.2 Aktivierung

Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "3" gesetzt werden (siehe "**CiA 402 Power State Machine**").

6.3.3 Controlword

Folgende Bits im Objekt 6040_h (Controlword) haben eine gesonderte Funktion:

Bit 8 (Halt): Ist dieses Bit auf "1" gesetzt, bleibt der Motor stehen. Bei einem Übergang von "1" auf "0" beschleunigt der Motor mit der eingestellten Startrampe bis zur Zielgeschwindigkeit. Bei einem Übergang von "0" auf "1" bremst der Motor ab und bleibt stehen.

6.3.4 Statusword

Folgende Bits im Objekt **6041**_h (Statusword) haben eine gesonderte Funktion:

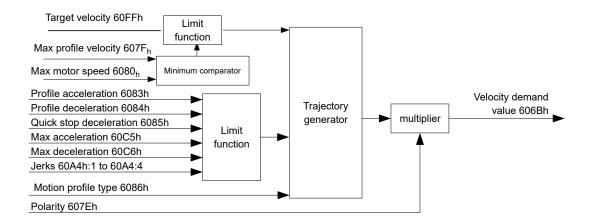
• Bit 10 (Zielgeschwindigkeit erreicht; Target Reached): Dieses Bit gibt in Kombination mit dem Bit 8 im Controlword an, ob die Zielgeschwindigkeit erreicht ist, gebremst wird oder der Motor steht (siehe Tabelle).

6041 _h Bit 10	6040 _h Bit 8	Beschreibung
0	0	Zielgeschwindigkeit nicht erreicht
0	1	Achse bremst
1	0	Zielgeschwindigkeit innerhalb Zielfenster (definiert in $\mathbf{606D}_h$ und $\mathbf{606E}_h$)
1	1	Geschwindigkeit der Achse ist 0

 Bit 13 (Deviation Error): Dieses Bit wird im Closed Loop-Betrieb gesetzt, wenn der Schlupffehler größer als die eingestellten Grenzen ist (60F8h Max Slippage und 203Fh Max Slippage Time Out).

6.3.5 Objekteinträge

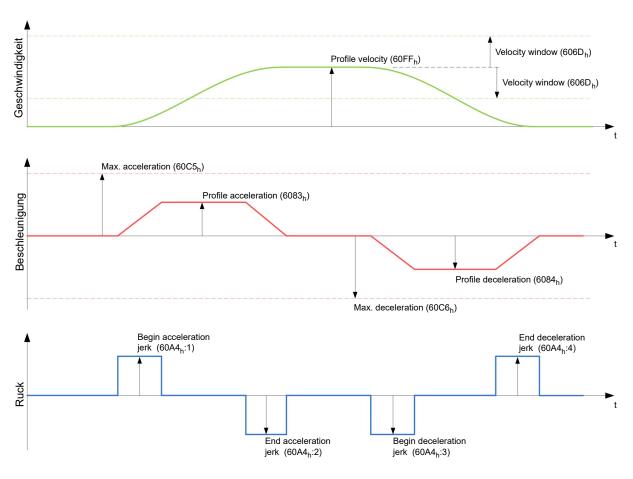
Folgende Objekte sind zur Steuerung dieses Modus erforderlich:


- 606B_h (Velocity Demand Value):
 Dieses Objekt enthält die Ausgabe des Rampengenerators, die gleichzeitig der Vorgabewert für den Geschwindigkeitsregler ist.
- 606C_h (Velocity Actual Value): Gibt die aktuelle Istgeschwindigkeit an.
- **606D**_h (Velocity Window):

Dieser Wert gibt an, wie stark die tatsächliche Geschwindigkeit von der Sollgeschwindigkeit abweichen darf, damit das Bit 10 (Zielgeschwindigkeit erreicht; Target Reached") im Objekt **6041**_h (Statusword) auf "1" gesetzt ist.

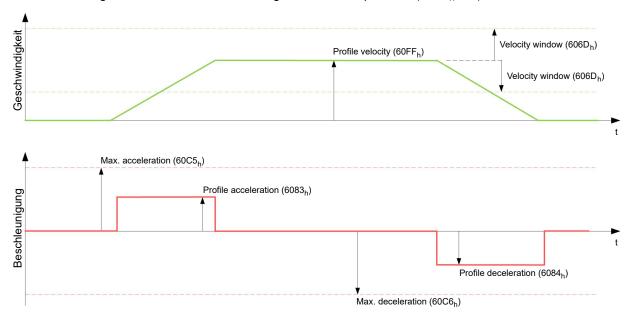
- 606E_h (Velocity Window Time):
 Dieses Objekt gibt an, wie lange die reale Geschwindigkeit und die Sollgeschwindigkeit nahe beieinander liegen müssen (siehe 606D_h "Velocity Window"), damit Bit 10 "Zielgeschwindigkeit erreicht" im Objekt 6041_h (Statusword) auf "1" gesetzt wird.
- 607E_h (Polarity):
 Wird hier Bit 6 auf "1" gestellt, wird das Vorzeichen der Zielgeschwindigkeit umgekehrt.
- 6083_h (Profile acceleration):
 Setzt den Wert für die Beschleunigungsrampe im Velocity Mode.
- 6084_h (Profile Deceleration):
 Setzt den Wert für die Bremsrampe im Velocity-Mode.
- 6085_h (Quick Stop Deceleration):
 Setzt den Wert für die Bremsrampe für die Schnellbremsung im Velocity Mode.
- **6086**_h (Motion Profile Type): Hier kann der Rampentyp ausgewählt werden ("0" = Trapez-Rampe, "3" = ruck-begrenzte Rampe).
- 60FF_h (Target Velocity): Gibt die zu erreichende Zielgeschwindigkeit an.
- Die Geschwindigkeit wird durch 607F_h (Max Profile Velocity) und 6080_h (Max Motor Speed) begrenzt, der kleinere Wert wird als Grenze herangezogen.

Objekte im Profile Velocity Mode


Aktivierung

Nachdem der Modus im Objekt **6060**_h (Modes Of Operation) ausgewählt wurde und die "Power State machine" (siehe "**CiA 402 Power State Machine**") auf *Operation enabled* geschaltet wurde, wird der Motor auf die Zielgeschwindigkeit im Objekt **60FF**_h beschleunigt (siehe nachfolgende Bilder). Dabei werden die Geschwindigkeits-, Beschleunigungs- und bei ruck-begrenzten Rampen auch die Ruckgrenzwerte berücksichtigt.

Limitierungen im ruck-limitierten Fall


Das folgende Bild zeigt die einstellbaren Limitierungen im ruck-limitierten Fall ($6086_h = 3$).

Limitierungen im Trapez-Fall

Dieses Bild zeigt die einstellbaren Limitierungen für den Trapez-Fall (6086_h = 0).

6.4 Profile Torque

6.4.1 Beschreibung

In diesem Modus wird das Drehmoment als Sollwert vorgegeben und über eine Rampenfunktion angefahren.

Hinweis

Dieser Modus funktioniert, nur wenn der Closed Loop aktiviert ist, siehe auch Inbetriebnahme Closed Loop.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

6.4.2 Aktivierung

Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "4" gesetzt werden (siehe "**CiA 402 Power State Machine**").

6.4.3 Controlword

Folgende Bits im Objekt 6040_h (Controlword) haben eine gesonderte Funktion:

Bit 8 (Halt): Ist dieses Bit auf "1" gesetzt, bleibt der Motor stehen. Wird dieses Bit von "1" auf "0" gesetzt, wird der Motor den Vorgaben entsprechend angefahren. Beim Setzen von "0" auf "1" wird der Motor unter Berücksichtigung der Vorgabewerte wieder zum Stillstand gebracht.

6.4.4 Statusword

Folgende Bits im Objekt **6041**_h (Statusword) haben eine gesonderte Funktion:

Bit 10 (Target Reached): Dieses Bit gibt in Kombination mit dem Bit 8 des Objekts 6040_h
(Controlword) an, ob das vorgegebene Drehmoment erreicht ist (siehe nachfolgende Tabelle). Das
Ziel gilt als erreicht wenn das Istdrehmoment (6077h Torque Actual Value) eine vorgegebene Zeit
(203Eh Torque Window Time Out) innerhalb eines Toleranzfensters (203Dh Torque Window) ist.

6040 _h Bit 8	6041 _h Bit 10	Beschreibung
0	0	Vorgegebenes Drehmoment nicht erreicht
0	1	Vorgegebenes Drehmoment erreicht
1	0	Achse beschleunigt
1	1	Geschwindigkeit der Achse ist 0

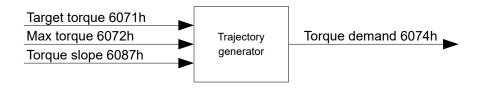
 Bit 11: Limit überschritten: Das Zieldrehmoment (6071_h) überschreitet das in 6072_h eingegebene maximalen Drehmoment.

6.4.5 Objekteinträge

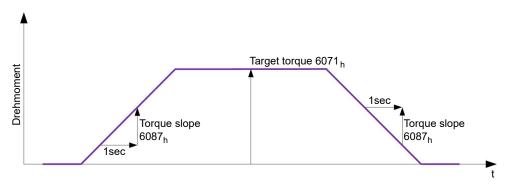
Alle Werte der folgenden Einträge im Objektverzeichnis sind als Tausendstel des maximalen Drehmoments anzugeben, welches dem Nennstrom (**203B**_h:01_h) entspricht. Dazu zählen die Objekte:

- 6071_h (Target Torque):
 Zielvorgabe des Drehmomentes
- 6072_h (Max Torque):
 Maximales Drehmoment während der gesamten Rampe (Beschleunigen, Drehmoment halten, Abbremsen)
- 6074_h (Torque Demand):
 Momentaner Ausgabewert des Rampengenerators (Drehmoment) für den Regler
- 6087_h (Torque Slope):
 Max. Änderung des Drehmoments pro Sekunde

Hinweis


Diese Werte sind nicht limitiert auf 100% des Nennstroms (**203B**_h:01_h). Drehmomentwerte höher als das Nenndrehmoment (generiert von dem Nennstrom) können erreicht werden, wenn die Maximaldauer des Spitzenstroms (**203B**_h:02_h) gesetzt wird (siehe **I2t Motor-Überlastungsschutz**). Alle Drehmoment-Objekte werden von dem Spitzenstrom limitiert.

Die folgenden Objekte werden zudem für diesen Operationsmodus benötigt:


3202_h Bit 5 (Motor Drive Submode Select):
 Ist dieses Bit auf "0" gesetzt, wird der Antriebsregler im Drehmoment-begrenzten Velocity Mode betrieben, d.h. die maximale Geschwindigkeit kann in Objekt 6080_h begrenzt werden und der Regler kann im Feldschwächebetrieb arbeiten.

Wird dieses Bit auf "1" gesetzt, arbeitet der Regler im ("Real") Torque Mode, die maximale Geschwindigkeit kann hier nicht begrenzt werden und der Feldschwächebetrieb ist nicht möglich.

Objekte des Rampengenerators

Torque-Verlauf

6.5 Homing

6.5.1 Übersicht

Beschreibung

Aufgabe der Referenzfahrt (Homing Method) ist es, den Positionsnullpunkt der Steuerung auf einen Encoder-Index bzw. Positionsschalter auszurichten.

Aktivierung

Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "6" gesetzt werden (siehe "**CiA 402 Power State Machine**").

Werden Referenz- und/oder Endschalter verwendet, müssen diese Spezialfunktionen erst in der E/A-Konfiguration aktiviert werden (siehe "**Digitale Ein- und Ausgänge**").

Controlword

Folgende Bits im Objekt 6040_h (Controlword) haben eine gesonderte Funktion:

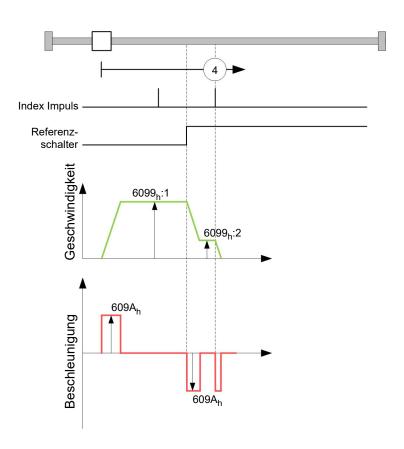
• Bit 4: Wird das Bit auf "1" gesetzt, wird die Referenzierung gestartet. Diese wird solange ausgeführt, bis entweder die Referenzposition erreicht wurde oder Bit 4 wieder auf "0" gesetzt wird.

Statusword

Folgende Bits im Objekt **6041**_h (Statusword) haben eine gesonderte Funktion:

Bit 13	Bit 12	Bit 10	Beschreibung
0	0	0	Referenzfahrt wird ausgeführt
0	0	1	Referenzfahrt ist unterbrochen oder nicht gestartet
0	1	0	Referenzfahrt bestätigt, aber Ziel wurde noch nicht erreicht
0	1	1	Referenzfahrt vollständig abgeschlossen
1	0	0	Fehler während der Referenzfahrt, Motor dreht sich noch
1	0	1	Fehler während der Referenzfahrt, Motor im Stillstand

Objekteinträge


Folgende Objekte sind zur Steuerung dieses Modus erforderlich:

- 607C_h (Home Offset): Gibt die Differenz zwischen Null-Position der Steuerung und dem Referenzpunkt der Maschine in benutzerdefinierten Einheiten an.
- 6098_h (Homing Method):
 Methode, mit der referenziert werden soll (siehe "Referenzfahrt-Methode")
- 6099_h:01_h (Speed During Search For Switch):
 Geschwindigkeit für die Suche nach dem Schalter
- 6099_h:02_h (Speed During Search For Zero):
 Geschwindigkeit für die Suche nach dem Index
- 6080_h (Max Motor Speed): maximale Geschwindigkeit
- **609A**_h (Homing Acceleration): Anfahr- und Bremsbeschleunigung für die Referenzfahrt
- **2056**_h (Limit Switch Tolerance Band):
 - Die Steuerung lässt nach dem Auffahren auf den positiven oder negativen Endschalter einen Toleranzbereich zu, den der Motor noch zusätzlich weiter fahren darf. Wird dieser Toleranzbereich überschritten, stoppt der Motor und die Steuerung wechselt in den Zustand "Fault". Falls während der Referenzfahrt Endschalter betätigt werden können, sollte der Toleranzbereich ausreichend gewählt werden, so dass der Motor beim Abbremsen den Toleranzbereich nicht verlässt. Andernfalls kann die Referenzfahrt nicht erfolgreich ausgeführt werden. Nach Abschluss der Referenzfahrt kann der Toleranzbereich, wenn dies die Anwendung erfordert, wieder auf "0" gesetzt werden.
- 203A_h:01_h (Minimum Current For Block Detection):
 Minimale Stromschwelle, durch deren Überschreiten, das Blockieren des Motors an einem Block erkannt werden soll.
- 203A_h:02_h (Period Of Blocking):
 Gibt die Zeit in ms an, die der Motor nach der Blockdetektion trotzdem noch gegen den Block fahren soll.

Geschwindigkeiten der Referenzfahrt

Das Bild zeigt die Geschwindigkeiten der Referenzfahrt am Beispiel der Methode 4:

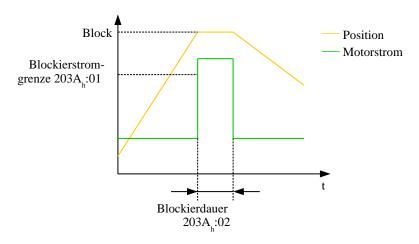
6.5.2 Referenzfahrt-Methode

Beschreibung

Die Referenzfahrt-Methode wird als Zahl in das Objekt **6098**_h geschrieben und entscheidet darüber, ob auf eine Schalterflanke (steigend/fallend), eine Stromschwelle für Blockdetektion bzw. einen Index-Impuls referenziert wird oder in welche Richtung die Referenzfahrt startet. Methoden, die den Index-Impuls des Encoders benutzen, liegen im Zahlenbereich 1 bis 14, 33 und 34. Methoden, die den Index-Impuls des Encoders nicht benutzen, liegen zwischen 17 und 30, sind in den Fahrprofilen aber identisch mit den Methoden 1 bis 14. Diese Zahlen sind in den nachfolgenden Abbildungen eingekreist dargestellt. Methoden, bei denen keine Endschalter eingesetzt werden und stattdessen das Fahren gegen einen Block erkannt werden soll, müssen mit einem Minus vor der Methodenzahl aufgerufen werden.

Für die nachfolgenden Grafiken gilt die negative Bewegungsrichtung nach links. Der Endschalter (*limit switch*) liegt jeweils vor der mechanischen Blockierung, der Referenzschalter (*home switch*) liegt zwischen den beiden Endschaltern. Die Index-Impulse kommen vom angeschlossenen Encoder.

Bei Methoden, die Homing auf Block benutzen, gelten die gleichen Abbildungen wie für die Methoden mit Endschalter. Da sich außer den fehlenden Endschaltern nichts ändert, wurde auf neue Abbildungen verzichtet. Hier gilt für die Abbildungen, dass die Endschalter durch eine mechanische Blockierung ersetzt werden müssen.


Homing auf Block

Homing auf Block funktioniert derzeit nur im Closed Loop-Betrieb.

"Homing auf Block" funktioniert wie jede Homing-Methode mit dem Unterschied, dass zur Positionierung - anstelle auf einen Endschalter - auf einen Block (Endanschlag) gefahren wird. Dabei sind zwei Einstellungen vorzunehmen:

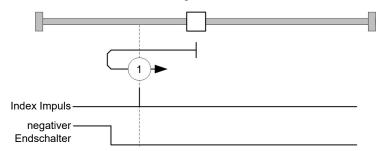
- 1. Stromhöhe: im Objekt 203A_h:01 wird die Stomhöhe definiert, ab der ein Fahren gegen den Block erkannt wird.
- Blockierdauer: im Objekt 203A_h:02 wird die Dauer, w\u00e4hrend der Motor gegen den Block f\u00e4hrt, eingestellt.

Methoden-Überblick

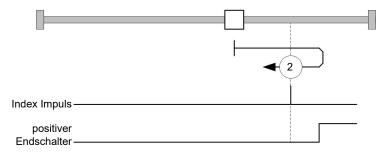
Die Methoden 1 bis 14, sowie 33 und 34 benutzen den Index-Impuls des Encoders.

Die Methoden 17 bis 32 sind identisch mit den Methoden 1 bis 14, mit dem Unterschied, dass nur noch auf den End- oder Referenzschalter referenziert wird und nicht auf den Index-Impuls.

- Methoden 1 bis 14 verwenden einen Index-Impuls.
- Methoden 17 bis 30 verwenden keinen Index-Impuls.
- Methoden 33 und 34 referenzieren nur auf den n\u00e4chsten Index-Impuls.
- Methode 35 referenziert auf die aktuelle Position.


Folgende Methoden können für Homing auf Block benutzt werden:

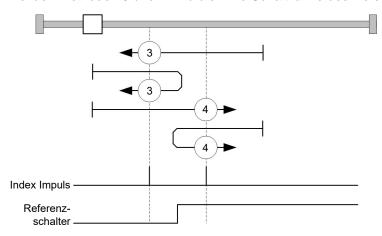
- Methoden -1 bis -2 und -7 bis -14 enthalten einen Index-Impuls
- Methoden -17 bis -18 und -23 bis -30 haben keinen Index-Impuls


Methoden 1 und 2

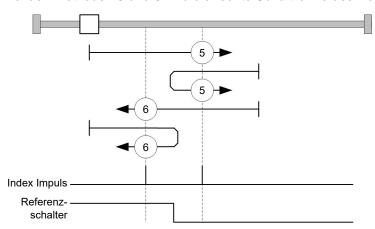
Referenzieren auf Endschalter und Index-Impuls.

Methode 1 referenziert auf negativen Endschalter und Index-Impuls:

Methode 2 referenziert auf positiven Endschalter und Index-Impuls:

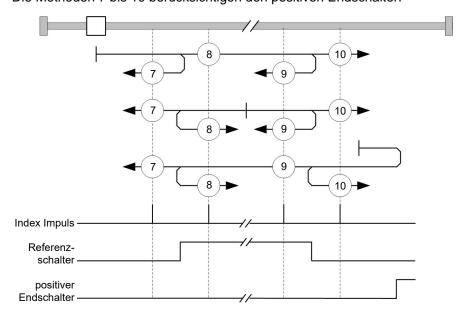


Methoden 3 bis 6


Referenzieren auf die Schaltflanke des Referenzschalters und Index-Impuls.

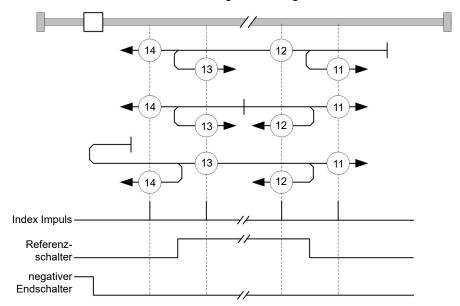
Bei den Methoden 3 und 4 wird die linke Schaltflanke des Referenzschalters als Referenz verwendet:

Bei den Methoden 5 und 6 wird die rechte Schaltflanke des Referenzschalters als Referenz verwendet:

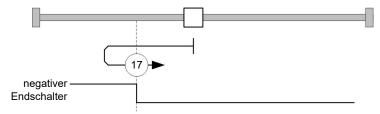


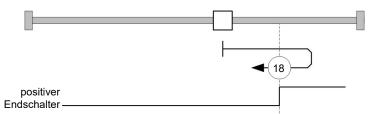
Methoden 7 bis 14

Referenzieren auf Referenzschalter und Index-Impuls (mit Endschaltern).


Bei diesen Methoden ist die derzeitige Position relativ zum Referenzschalter unwichtig. Mit der Methode 10 wird beispielsweise immer auf den Index-Impuls rechts neben der rechten Flanke des Referenzschalters referenziert.

Die Methoden 7 bis 10 berücksichtigen den positiven Endschalter:

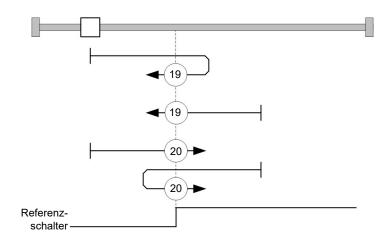

Die Methoden 11 bis 14 berücksichtigen den negativen Endschalter:


Methoden 17 und 18

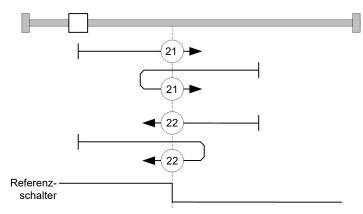
Referenzieren auf den Endschalter ohne den Index-Impuls.

Methode 17 referenziert auf den negativen Endschalter:

Methode 18 referenziert auf den positiven Endschalter:

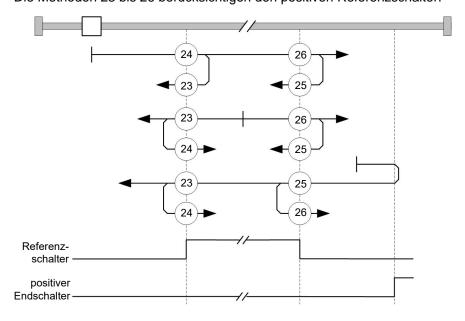

Methoden 19 bis 22

Referenzieren auf die Schaltflanke des Referenzschalters ohne den Index-Impuls.


Bei den Methoden 19 und 20 (äquivalent zu Methoden 3 und 4) wird die linke Schaltflanke des Referenzschalters als Referenz verwendet:

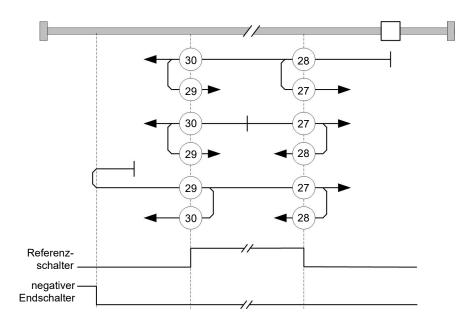
76

Bei den Methoden 21 und 22 (äquivalent zu Methoden 5 und 6) wird die rechte Schaltflanke des Referenzschalters als Referenz verwendet:



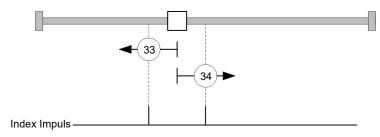
Methoden 23 bis 30

Referenzieren auf Referenzschalter ohne den Index-Impuls (mit Endschaltern).


Bei diesen Methoden ist die derzeitige Position relativ zum Referenzschalter unwichtig. Mit der Methode 26 wird beispielsweise immer auf den Index-Impuls rechts neben der rechten Flanke des Referenzschalters referenziert.

Die Methoden 23 bis 26 berücksichtigen den positiven Referenzschalter:

Die Methoden 27 bis 30 berücksichtigen den negativen Referenzschalter:



Methoden 33 und 34

Referenzieren auf den nächsten Index-Impuls.

Bei diesen Methoden wird nur auf den jeweils folgenden Index-Impuls referenziert:

Methode 35

Referenziert auf die aktuelle Position.

Hinweis

Für den Homing Mode 35 ist es nicht notwendig, die **CiA 402 Power State Machine** in den Status "Operation Enabled" zu schalten. Auf diese Weise kann vermieden werden, dass durch eine Bestromung der Motorwicklungen im *Open Loop*-Betrieb, die aktuelle Position nach dem Homing Mode 35 nicht genau 0 ist.

6.6 Interpolated Position Mode

6.6.1 Übersicht

Beschreibung

Der Interpolated Position Mode dient zum Synchronisieren mehrerer Achsen. Hierzu übernimmt eine übergeordnete Steuerung die Rampen- bzw. Bahnberechnung und überträgt die jeweilige Sollposition, bei der sich die Achse zu einem bestimmten Zeitpunkt befinden soll, zur Steuerung. Zwischen diesen Positions-Stützstellen interpoliert die Steuerung.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

Synchronisierung zum SYNC-Objekt

Für den Interpolated Position Mode ist es notwendig, dass sich die Steuerung auf das SYNC-Objekt (abhängig vom Feldbus) aufsynchronisiert. Dieses SYNC-Objekt ist in regelmäßigen Zeitabständen von der übergeordneten Steuerung zu senden. Die Synchronisation erfolgt, sobald die Steuerung in den NMT-Modus *Operational* geschaltet wird.

Hinweis

Es wird empfohlen, wenn möglich ein Zeitintervall des SYNC-Objekts zu nutzen.

6.6.2 Aktivierung

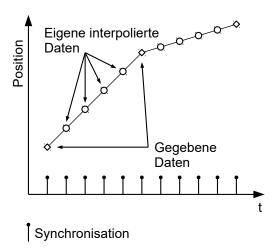
Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "7" gesetzt werden (siehe "**CiA 402 Power State Machine**").

6.6.3 Controlword

Folgende Bits im Objekt 6040_h (Controlword) haben eine gesonderte Funktion:

- Bit 4 aktiviert die Interpolation, wenn es auf "1" gesetzt wird.
- Bit 8 (Halt): Ist dieses Bit auf "1" gesetzt, bleibt der Motor stehen. Bei einem Übergang von "1" auf "0" beschleunigt der Motor mit der eingestellten Startrampe bis zur Zielgeschwindigkeit. Bei einem Übergang von "0" auf "1" bremst der Motor ab und bleibt stehen. Die Bremsbeschleunigung ist dabei abhängig von der Einstellung des "Halt Option Code" im Objekt 605Dh.

6.6.4 Statusword


Folgende Bits im Objekt **6041**_h (Statusword) haben eine gesonderte Funktion:

- Bit 10: Zielposition erreicht: Dieses bit ist auf "1" gesetzt, wenn die Zielposition erreicht wurde (sollte das Halt-Bit im Controlword "0" sein) oder die Achse hat die Geschwindigkeit 0 (falls das Halt-Bit im letzten Controlword "1" war).
- Bit 12 (IP Modus aktiv): Dieses Bit wird auf "1" gesetzt, wenn die Interpolation aktiv ist.

6.6.5 Benutzung

Die Steuerung folgt einem linear interpolierten Pfad zwischen der aktuellen und der vorgegebenen Zielposition. Die (nächste) Zielposition muss in das Datensatz **60C1**_h:01_h geschrieben werden.

In der derzeitigen Implementation wird nur

- lineare Interpolation
- und eine Zielposition

unterstützt.

6.6.6 **Setup**

Das folgende Setup ist nötig:

- **60C2**_h:01_h: Zeit zwischen zwei übergebenen Zielpositionen in ms.
- 60C4_h:06_h: dieses Objekt ist auf "1" zu setzen um die Zielposition im Objekt 60C1_h:01_h modifizieren zu dürfen.
- 6081_h (Profile Velocity): maximale Geschwindigkeit, mit der die Position angefahren werden soll
- Die Geschwindigkeit wird durch 607F_h (Max Profile Velocity) und 6080_h (Max Motor Speed) begrenzt, der kleinere Wert wird als Grenze herangezogen.
- Um den Motor drehen zu können, ist die Power state machine auf den Status Operation enabled zu setzen (siehe CiA 402 Power State Machine)

6.6.7 Operation

Nach dem Setup ist die Aufgabe der übergerodeten Steuerung, die Zielpositionen rechtzeitig in das Objekt **60C1**_h:01_h zu schreiben.

6.7 Cyclic Synchronous Position

6.7.1 Übersicht

Beschreibung

In diesem Modus wird der Steuerung in festen Zeitabständen (im Folgenden *Zyklus* genannt) über den Feldbus eine absolute Positionsvorgabe übergeben. Die Steuerung berechnet dabei keine Rampen mehr, sondern folgt nur noch den Vorgaben.

Die Zielposition wird zyklisch (per *PDO*) übertragen. Das Bit 4 im Controlword muss nicht gesetzt werden (im Gegensatz zum **Profile Position** Modus).

A

Hinweis

Die Zielvorgabe ist absolut und damit unabhängig davon, wie oft sie pro Zyklus versendet wurde.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

Aktivierung

Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "8" gesetzt werden (siehe "**CiA 402 Power State Machine**").

Controlword

In diesem Modus haben die Bits des Controlword 6040_h keine gesonderte Funktion.

Statusword

Folgende Bits im Objekt **6041**_h (Statusword) haben eine gesonderte Funktion:

Bit	Wert	Beschreibung
8	0	Steuerung ist nicht synchron zum Feldbus
8	1	Steuerung ist synchron zum Feldbus
10	0	Reserviert
10	1	Reserviert
12	0	Steuerung folgt nicht der Zielvorgabe, die Vorgabe des 607A _h (Target Position) wird ignoriert
12	1	Steuerung folgt der Zielvorgabe, das Objekt 607A _h (Target Position) wird als Eingabe für die Positionsregelung genutzt.
13	0	Kein Schleppfehler
13	1	Schleppfehler

Bit 11: Limit überschritten: Die Sollposition über- oder unterschreitet die in **607D**_h eingegebenen Grenzwerte.

6.7.2 Objekteinträge

Folgende Objekte sind zur Steuerung dieses Modus erforderlich:

- **607A**_h (Target Position): Dieses Objekt muss zyklisch mit dem Positions-Sollwert beschrieben werden.
- 607B_h (Position Range Limit): Dieses Objekt enthält die Vorgabe für einen Über- oder Unterlauf der Positionsangabe.
- **607D**_h (Software Position Limit): Dieses Objekt legt die Limitierungen fest, innerhalb deren sich die Positionsvorgabe (607A_h) befinden muss.
- 6065_h (Following Error Window): Dieses Objekt gibt einen Toleranz-Korridor in positiver wie negativer Richtung von der Sollvorgabe vor. Befindet sich die Ist-Position länger als die vorgegebene Zeit (6066_h) außerhalb dieses Korridors, wird ein Schleppfehler gemeldet.
- 6066_h (Following Error Time Out): Dieses Objekt gibt den Zeitbereich in Millisekunden vor. Sollte sich die Ist-Position länger als dieser Zeitbereich außerhalb des Positions-Korridors (6065_h) befinden, wird ein Schleppfehler ausgelöst.
- **6085**_h (Quick-Stop Deceleration): Dieses Objekt hält die Bremsbeschleunigung für den Fall, dass ein Quick-Stop ausgelöst wird.
- 605A_h (Quick-Stop Option Code): Dieses Objekt enthält die Option, die im Falle eines Quick-Stops ausgeführt werden soll.
- 6080_h (Max Motor Speed): maximale Geschwindigkeit

- 60C2_h:01_h (Interpolation Time Period): Dieses Objekt gibt die Zeit eines Zyklusvor, in diesen Zeitabständen muss ein neuer Sollwert in das 607A_h geschrieben werden.
 Es gilt dabei: Zykluszeit = Wert des 60C2_h:01_h * 10^{Wert des 60C2:02} Sekunden.
- 60C2_h:02_h (Interpolation Time Index): Dieses Objekt gibt die Zeitbasis der Zyklen an. Derzeit wird nur der Wert 60C2_h:02_h=-3 unterstützt, das ergibt eine Zeitbasis von 1 Millisekunde.

Folgende Objekte können in dem Modus ausgelesen werden:

- 6064_h (Position Actual Value)
- 606C_h (Velocity Actual Value)
- 60F4_h (Following Error Actual Value)

6.8 Cyclic Synchronous Velocity

6.8.1 Übersicht

Beschreibung

In diesem Modus wird der Steuerung in festen Zeitabständen (im Folgenden *Zyklus* genannt) über den Feldbus eine Geschwindigkeitsvorgabe übergeben. Die Steuerung berechnet dabei keine Rampen mehr, sondern folgt nur noch den Vorgaben.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

Aktivierung

Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "9" gesetzt werden (siehe "**CiA 402 Power State Machine**").

Controlword

In diesem Modus haben die Bits des Controlword 6040_h keine gesonderte Funktion.

Statusword

Folgende Bits im Objekt **6041**_h (Statusword) haben eine gesonderte Funktion:

Bit	Wert	Beschreibung
8	0	Steuerung ist nicht synchron zum Feldbus
8	1	Steuerung ist synchron zum Feldbus
10	0	Reserviert
10	1	Reserviert
12	0	Steuerung folgt nicht der Zielvorgabe, die Vorgabe des 60FF _h (Target Velocity) wird ignoriert
12	1	Steuerung folgt der Zielvorgabe, das Objekt $\mathbf{60FF}_h$ (Target Velocity) wird als Eingabe für die Positionsregelung genutzt.
13	0	Reserviert
13	1	Reserviert

6.8.2 Objekteinträge

Folgende Objekte sind zur Steuerung dieses Modus erforderlich:

- **60FF**_h (Target Velocity): Dieses Objekt muss zyklisch mit dem Geschwindigkeits-Sollwert beschrieben werden.
- 6085_h (Quick-Stop Deceleration): Dieses Objekt hält die Bremsbeschleunigung für den Fall, dass ein Quick-Stop ausgelöst wird (siehe "CiA 402 Power State Machine").
- **605A**_h (Quick-Stop Option Code): Dieses Objekt enthält die Option, die im Falle eines Quick-Stops ausgeführt werden soll (siehe "CiA 402 Power State Machine").
- 6080_h (Max Motor Speed): maximale Geschwindigkeit
- 60C2_h:01_h (Interpolation Time Period): Dieses Objekt gibt die Zeit eines Zyklus vor, in diesen Zeitabständen muss ein neuer Sollwert in das 60FF_h geschrieben werden.
 Es gilt dabei: Zykluszeit = Wert des 60C2_h:01_h * 10^{Wert des 60C2:02} Sekunden.
- **60C2**_h:02_h (Interpolation Time Index): Dieses Objekt gibt die Zeitbasis der Zyklen an. Derzeit wird nur der Wert **60C2**_h:02_h=-3 unterstützt, das ergibt eine Zeitbasis von 1 Millisekunde.

Folgende Objekte können in dem Modus ausgelesen werden:

- 606C_h (Velocity Actual Value)
- **607E**_h (Polarity)

6.9 Cyclic Synchronous Torque

6.9.1 Übersicht

Beschreibung

In diesem Modus wird der Steuerung in festen Zeitabständen (im Folgenden *Zyklus* genannt) über den Feldbus eine absolute Drehmomentvorgabe übergeben. Die Steuerung berechnet dabei keine Rampen mehr, sondern folgt nur noch den Vorgaben.

Hinweis

Dieser Modus funktioniert nur wenn der Closed Loop aktiviert ist, siehe auch Inbetriebnahme Closed Loop.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

Aktivierung

Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "10" gesetzt werden (siehe "**CiA 402 Power State Machine**").

Controlword

In diesem Modus haben die Bits des Controlword **6040**_h keine gesonderte Funktion.

Statusword

Folgende Bits im Objekt **6041**_h (Statusword) haben eine gesonderte Funktion:

Bit	Wert	Beschreibung
8	0	Steuerung ist nicht synchron zum Feldbus
8	1	Steuerung ist synchron zum Feldbus
10	0	Reserviert

Bit	Wert	Beschreibung
10	1	Reserviert
12	0	Steuerung folgt nicht der Zielvorgabe, die Vorgabe des 6071 _h (Target Torque) wird ignoriert
12	1	Steuerung folgt der Zielvorgabe, das Objekt 6071 _h (Target Torque) wird als Eingabe für die Positionsregelung genutzt.
13	0	Reserviert
13	1	Reserviert

6.9.2 Objekteinträge

Folgende Objekte sind zur Steuerung dieses Modus erforderlich:

- **6071**_h (Target Torque): Dieses Objekt muss zyklisch mit dem Drehmoment-Sollwert beschrieben werden und ist relativ zu **6072**_h einzustellen.
- 6072_h (Max Torque): Beschreibt das maximal zulässige Drehmoment.
- 6080_h (Max Motor Speed): maximale Geschwindigkeit
- 60C2_h:01_h (Interpolation Time Period): Dieses Objekt gibt die Zeit eines Zyklus vor, in diesen Zeitabständen muss ein neuer Sollwert in das 60FF_h geschrieben werden.
 Es gilt dabei: Zykluszeit = Wert des 60C2_h:01_h * 10^{Wert des 60C2:02} Sekunden.
- **60C2**_h:02_h (Interpolation Time Index): Dieses Objekt gibt die Zeitbasis der Zyklen an. Derzeit wird nur der Wert **60C2**_h:02_h=-3 unterstützt, das ergibt eine Zeitbasis von 1 Millisekunde.

Folgende Objekte können in dem Modus ausgelesen werden:

- **606C**_h (Velocity Actual Value)
- 6074_h (Torque Demand)

6.10 Takt-Richtungs-Modus

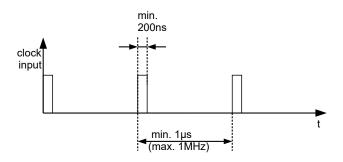
6.10.1 Beschreibung

Im Takt-Richtungs-Modus wird der Motor über zwei Eingänge durch eine übergeordnete Positioniersteuerung mit einem Takt- und einem Richtungssignal betrieben. Bei jedem Takt führt der Motor einen Schritt in die dem Richtungssignal entsprechende Richtung aus.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

6.10.2 Aktivierung


Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "-1" (bzw."FFh" gesetzt werden (siehe "**CiA 402 Power State Machine**").

6.10.3 Generelles

Folgende Daten gelten für jede Unterart des Takt-Richtungs-Modus:

 Die maximale Frequenz der Eingangspulse liegt bei 1MHz, der ON-Puls sollte dabei nicht kleiner als 200 ns werden.

 Die Skalierung der Schritte erfolgt über die Objekte 2057_h und 2058_h. Dabei gilt die folgende Formel:

Schrittweite pro Puls =
$$\frac{2057_{h}}{2058_{h}}$$

Ab Werk ist der Wert "Schrittweite pro Puls" = $128 (2057_h=128 \text{ und } 2058_h=1) \text{ eingestellt}$, was einem Viertelschritt pro Puls entspricht. Ein Vollschritt ist der Wert "512", ein Halbschritt pro Puls entsprechend "256" usw.

1 Hinweis

Bei einem Schrittmotor mit 50 Polpaaren entsprechen 200 Vollschritte einer mechanischen Umdrehung der Motorwelle.

Die BLDC-Motoren werden von der Steuerung im *Takt-Richtungs-Modus* auch als Schrittmotoren behandelt. Das bedeutet, dass, bei einem BLDC-Motor mit z.B. 3 Polpaaren, 12 (=4*3) Vollschritte einer Umdrehung entsprechen.

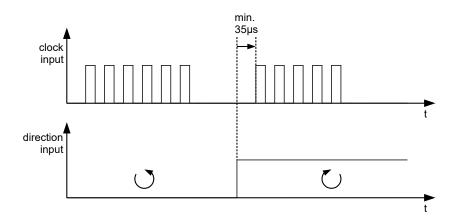
1 Hinweis

Bei einem Richtungswechsel ist es nötig, mindestens eine Zeit von 35µs verstreichen zu lassen, bevor der neue Takt angelegt wird.

6.10.4 Statusword

Folgende Bits im Objekt **6041**_h (Statusword) haben eine gesonderte Funktion:

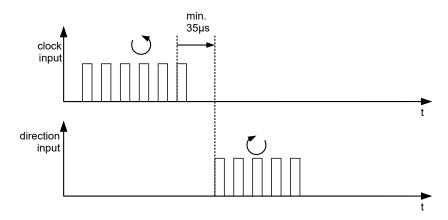
 Bit 13 (Following Error): Dieses Bit wird im Closed Loop-Betrieb gesetzt, wenn der Schleppfehler größer als die eingestellten Grenzen ist (6065_h (Following Error Window) und 6066_h (Following Error Time Out)).


6.10.5 Unterarten des Takt-Richtungs-Modus

Takt-Richtungs-Modus (TR-Modus)

Um den Modus zu aktivieren muss das Objekt 205B_h auf den Wert "0" gesetzt sein (Werkseinstellung).

In diesem Modus müssen über den Takteingang die Pulse vorgegeben werden, das Signal des Richtungseingangs gibt dabei die Drehrichtung vor (siehe nachfolgende Grafik).



Rechts-/Linkslauf-Modus (CW/CCW-Modus)

Um den Modus zu aktivieren muss das Objekt 205Bh auf den Wert "1" gesetzt sein.

In diesem Modus entscheidet der verwendete Eingang über die Drehrichtung (siehe nachfolgende Grafik).

6.11 Auto-Setup

6.11.1 Beschreibung

Um einige Parameter im Bezug zum Motor und den angeschlossenen Sensoren (Encoder/ Hallsensoren) zu ermitteln, wird ein *Auto-Setup* durchgeführt. Der **Closed Loop** Betrieb setzt ein erfolgreich abgeschlossenes *Auto-Setup* voraus. Das *Auto-Setup* ist nur einmal bei der Inbetriebnahme durchzuführen, solange sich der an der Steuerung angeschlossene Motor/Sensor nicht ändert. Für Details siehe **entsprechenden Abschnitt im Kapitel Inbetriebnahme**.

Hinweis

In diesem Modus sind die Endschalter und damit die Toleranzbänder aktiv. Für weitere Informationen zu den Endschaltern, siehe **Begrenzung des Bewegungsbereichs**.

6.11.2 Aktivierung

Um den Modus zu aktivieren, muss im Objekt **6060**_h (Modes Of Operation) der Wert "-2" (="FE_h") gesetzt werden (siehe **CiA 402 Power State Machine**).

6.11.3 Controlword

Folgende Bits im Objekt **6040**_h (Controlword) haben eine gesonderte Funktion:

• Bit 4 startet einen Fahrauftrag. Dieser wird bei einem Übergang von "0" nach "1" übernommen.

6.11.4 Statusword

Folgende Bits im Objekt **6041**_h (Statusword) haben eine gesonderte Funktion:

- Bit 10: Indexed: zeigt an, ob ein Encoder-Index gefunden wurde (= "1") oder nicht (= "0").
- Bit 12: Aligned: dieses Bit wird auf "1" gesetzt, nachdem das Auto-Setup beendet ist

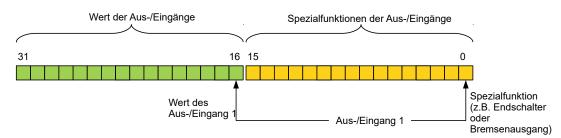
7 Spezielle Funktionen

7.1 Digitale Ein- und Ausgänge

7.1.1 Bitzuordnung

Die Software der Steuerung ordnet jedem Eingang und Ausgang zwei Bits im jeweiligen Objekt (z.B. **60FDh Digital Inputs** bzw. **60FEh Digital Outputs**) zu:

- Das erste Bit entspricht der Spezialfunktion eines Ausgangs oder Eingangs. Diese Funktionen sind immer verfügbar auf den Bits 0 bis einschließlich 15 des jeweiligen Objekts. Darunter fallen die Endschalter und der Referenzschalter bei den digitalen Eingängen und die Bremsensteuerung bei den Ausgängen.
- 2. Das zweite Bit zeigt den Aus-/Eingang an sich als Pegel, diese sind auf Bit 16 bis 31 verfügbar.


Beispiel

Um den Wert des Ausgangs 2 zu manipulieren, ist immer Bit 17 in 60FE_h zu benutzen.

Um die Spezialfunktion "Negativer Endschalter" des Eingangs 1 zu aktivieren, ist Bit 0 in $3240_h:01_h$ zu setzen, und um den Zustand des Eingangs abzufragen ist Bit 0 in $60FD_h$ zu lesen. Das Bit 16 in $60FD_h$ zeigt ebenfalls den Zustand des Eingangs 1 (unabhängig davon, ob die Spezialfunktion des Eingangs aktiviert wurde oder nicht).

In der nachfolgenden Zeichnung ist diese Zuordnung graphisch dargestellt.

Bits eines beliebigen Objektes zur Steuerung eines Aus-/Eingangs

7.1.2 Digitale Eingänge

Übersicht

Bei Digitaleingängen mit 5 V darf die Länge der Zuleitungen 3 Meter nicht überschreiten.

i Hinweis

Die digitalen Eingänge werden einmal pro Millisekunde erfasst. Signaländerungen am Eingang kürzer als eine Millisekunde werden nicht verarbeitet.

Folgende Eingänge stehen zur Verfügung:

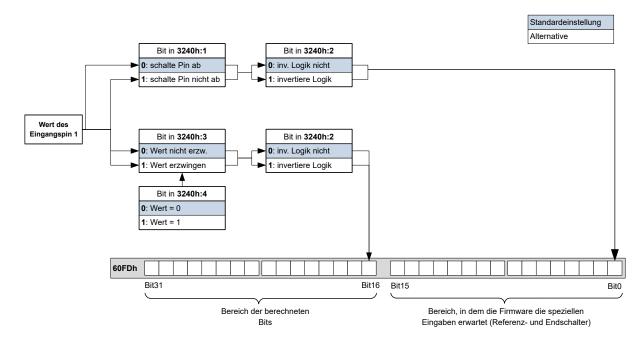
Eingang	Sonderfunktion	Schaltschwelle umschaltbar	Differenziell / single-ended
1	Negativer Endschalter	ja, 5 V oder 24 V (siehe 3240 _h :06 _h)	single-ended
2	Positiver Endschalter	ja, 5 V oder 24 V (siehe 3240 _h :06 _h)	single-ended
3	Referenzschalter / Richtungseingang im Takt- Richtungs-Modus	ja, 5 V oder 24 V (siehe 3240 _h :06 _h)	single-ended
4	Takteingang im Takt-Richtungs- Modus	ja, 5 V oder 24 V (siehe 3240 _h :06 _h)	single-ended
5	keine	nein, 5 V bis 24 V Weitbereichseingang	single-ended
6	keine	nein, 5 V bis 24 V Weitbereichseingang	single-ended

Objekteinträge

Über die folgenden OD-Einstellungen kann der Wert eines Eingangs manipuliert werden, wobei hier immer nur das entsprechende Bit auf den Eingang wirkt.

- 3240_h:01_h (Special Function Enable): Dieses Bit erlaubt Sonderfunktionen eines Eingangs aus(Wert "0") oder einzuschalten (Wert "1"). Soll Eingang 1 z.B. nicht als negativer Endschalter
 verwendet werden, so muss die Sonderfunktion abgeschaltet werden, damit nicht fälschlicherweise
 auf den Signalgeber reagiert wird. Auf die Bits 16 bis 31 hat das Objekt keine Auswirkungen.
 Die Firmware wertet folgende Bits aus:
 - · Bit 0: Negativer Endschalter
 - Bit 1: Positiver Endschalter
 - · Bit 2: Referenzschalter

Sollen z.B. zwei Endschalter und ein Referenzschalter verwendet werden, müssen Bits 0-2 in **3240**_h:01_h auf "1" gesetzt werden


- **3240**_h:02_h (Function Inverted): Dieser Subindex wechselt von Schließer-Logik (ein logischer High-Pegel am Eingang ergibt den Wert "1" im Objekt **60FD**_h) auf Öffner-Logik (der logische High-Pegel am Eingang ergibt den Wert "0").
 - Das gilt für die Sonderfunktionen (außer den Takt- und Richtungseingängen) und für die normalen Eingänge. Hat das Bit den Wert "0" gilt Schließer-Logik, entsprechend bei dem Wert "1" die Öffner-Logik. Bit 0 wechselt die Logik des Eingangs 1, Bit 1 die Logik des Eingangs 2 usw. .
- 3240_h:03_h (Force Enable): Dieser Subindex schaltet die Softwaresimulation von Eingangswerten ein, wenn das entsprechende Bit auf "1" gesetzt ist.
 Dann werden nicht mehr die tatsächlichen, sondern die in Objekt 3240_h:04_h eingestellten Werte für den jeweiligen Eingang verwendet. Bit 0 entspricht dabei dem Eingang 1, Bit 1 dem Eingang 2 usw...
- **3240**_h:04_h (Force Value): Dieses Bit gibt den Wert vor, der als Eingangswert eingelesen werden soll, wenn das gleiche Bit im Objekt **3240**_h:03_h gesetzt wurde.
- 3240_h:05_h (Raw Value): Dieses Objekt beinhaltet den unmodifizierten Eingabewert.
- 3240_h:06_h (Input Range Select): Damit können Eingänge welche über diese Funktion verfügen von der Schaltschwelle von 5 V (Bit auf "0") auf die Schaltschwelle 24 V (Bit auf "1") umgeschalten werden. Bit 0 entspricht dabei dem Eingang 1, Bit 1 dem Eingang 2 usw..
- 60FD_h (Digital Inputs): Dieses Objekt enthält eine Zusammenfassung der Eingänge und der Spezialfunktionen.

Verrechnung der Eingänge

Verrechnung des Eingangssignals am Beispiel von Eingang 1:

Der Wert an Bit 0 des Objekts **60FD**_h wird von der Firmware als negativer Endschalter interpretiert, das Ergebnis der vollständigen Verrechnung wird in Bit 16 abgelegt.

Input Routing

Prinzip

Um die Zuordnung der Eingänge flexibler vornehmen zu können, existiert der sogenannte *Input Routing Modus*. Dieser weist ein Signal einer Quelle auf ein Bit in dem Objekt **60FD**_h zu.

Aktivierung

Dieser Modus wird aktiviert, indem das Objekt 3240h:08h (Routing Enable) auf 1 gesetzt wird.

(i) Hinweis

Die Einträge 3240_h :01_h bis 3240:04_h haben dann **keine** Funktion mehr, bis das Eingangsrouting wieder abgeschaltet wird.

1 Hinweis

Wird das *Input Routing* eingeschaltet, werden initial die Werte des **3242**_h geändert und entsprechen der Funktion der Inputs, wie diese vor der Aktivierung des *Input Routing* war. Die Eingänge der Steuerung verhalten sich mit der Aktivierung des *Input Routing* gleich. Es sollte daher nicht zwischen dem normalen Modus und dem *Input Routing* hin- und her geschalten werden.

Routing

Das Objekt 3242_h bestimmt, welche Signalquelle auf welches Bit des $\mathbf{60FD}_h$ geroutet wird. Der Subindex 01_h des 3242_h bestimmt Bit 0, Subindex 02_h das Bit 1, und so weiter. Die Signalquellen und deren Nummern finden Sie in den nachfolgenden Listen.

Numm	Nummer		
dec	hex	Signalquelle	
00	00	Signal ist immer 0	
01	01	Physikalischer Eingang 1	
02	02	Physikalischer Eingang 2	
03	03	Physikalischer Eingang 3	
04	04	Physikalischer Eingang 4	
05	05	Physikalischer Eingang 5	
06	06	Physikalischer Eingang 6	
07	07	Physikalischer Eingang 7	
08	08	Physikalischer Eingang 8	
09	09	Physikalischer Eingang 9	
10	0A	Physikalischer Eingang 10	
11	0B	Physikalischer Eingang 11	
12	0C	Physikalischer Eingang 12	
13	0D	Physikalischer Eingang 13	
14	0E	Physikalischer Eingang 14	
15	0F	Physikalischer Eingang 15	
16	10	Physikalischer Eingang 16	
65	41	Hall Eingang "U"	
66	42	Hall Eingang "V"	
67	43	Hall Eingang "W"	
68	44	Encoder Eingang "A"	
69	45	Encoder Eingang "B"	
70	46	Encoder Eingang "Index"	
72	48	Status "Ethernet aktiv"	

Die nachfolgende Tabelle beschreibt die invertierten Signale der vorherigen Tabelle.

Numme	Nummer		
dec	hex	Signalquelle	
128	80	Signal ist immer 1	
129	81	Invertierter physikalischer Eingang 1	
130	82	Invertierter physikalischer Eingang 2	
131	83	Invertierter physikalischer Eingang 3	
132	84	Invertierter physikalischer Eingang 4	
133	85	Invertierter physikalischer Eingang 5	
134	86	Invertierter physikalischer Eingang 6	
135	87	Invertierter physikalischer Eingang 7	
136	88	Invertierter physikalischer Eingang 8	
137	89	Invertierter physikalischer Eingang 9	
138	8A	Invertierter physikalischer Eingang 10	

Numme	Nummer		
dec	hex	Signalquelle	
139	8B	Invertierter physikalischer Eingang 11	
140	8C	Invertierter physikalischer Eingang 12	
141	8D	Invertierter physikalischer Eingang 13	
142	8E	Invertierter physikalischer Eingang 14	
143	8F	Invertierter physikalischer Eingang 15	
144	90	Invertierter physikalischer Eingang 16	
193	C1	Invertierter Hall Eingang "U"	
194	C2	Invertierter Hall Eingang "V"	
195	C3	Invertierter Hall Eingang "W"	
196	C4	Invertierter Encoder Eingang "A"	
197	C5	Invertierter Encoder Eingang "B"	
198	C6	Invertierter Encoder Eingang "Index"	
200	C8	Invertierter Status "Ethernet aktiv"	

Beispiel

Es soll der Eingang 1 auf Bit 16 des Objekts **60FD**_h geroutet werden:

Die Nummer der Signalquelle für Eingang 1 ist die "1". Das Routing für Bit 16 wird in das 3242_h : 11_h geschrieben.

Demnach muss das Objekt 3242_h:11_h auf den Wert "1" gesetzt werden.

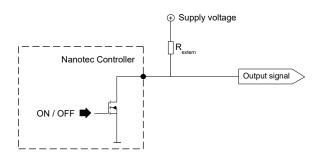
7.1.3 Digitale Ausgänge

Ausgänge

Die Ausgänge werden über das Objekt **60FE**_h gesteuert. Dabei entspricht Ausgang 1 dem Bit 16 im Objekt **60FE**_h, Ausgang 2 dem Bit 17 usw. wie bei den Eingängen. Die Ausgänge mit Sonderfunktionen sind in der Firmware wieder in den unteren Bits 0 bis 15 eingetragen. Im Moment ist nur Bit 0 belegt, das die Motorbremse steuert.

Beschaltung

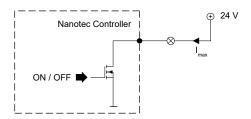
Hinweis


Beachten Sie immer die maximale Belastbarkeit des Ausgangs (siehe Anschlussbelegung).

Die Outputs sind als "Open Drain" realisiert. Demzufolge ist immer eine externe Spannungsversorgung nötig.

Beispiel

Es soll das digitale Ausgangssignal weiter verwendet werden. Dazu ist eine Beschaltung wie im nachfolgenden Bild zu realisieren.

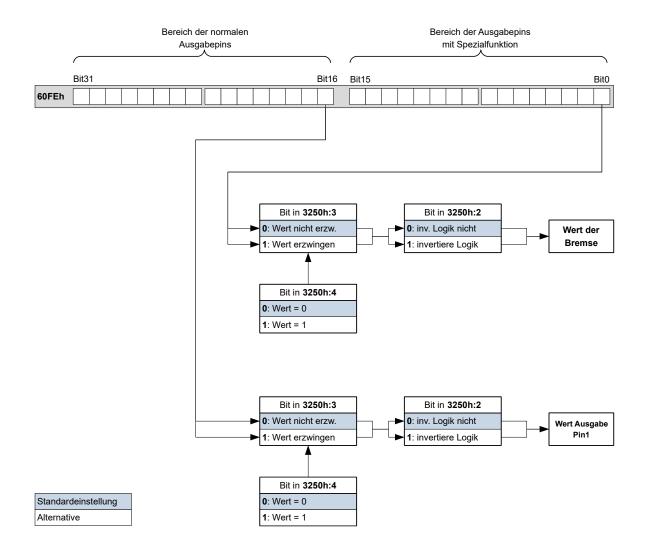


Bei einer Versorgungsspannung von +24 V wird ein Widerstandswert R_{extern} von 10 k Ω empfohlen.

Beispiel

Es soll ein einfacher Verbraucher mit dem digitalen Ausgang gestellt werden.

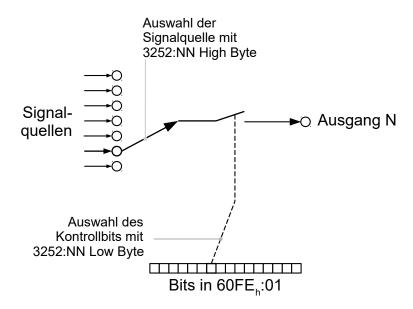
Objekteinträge


Es existieren zusätzliche OD-Einträge, um den Wert der Ausgänge zu manipulieren (siehe dazu das nachfolgende Beispiel). Ähnlich wie bei den Eingängen wirkt immer nur das Bit an der entsprechenden Stelle auf den jeweiligen Ausgang:

- 3250_h:01_h: Keine Funktion.
- **3250**_h:02_h: Damit lässt sich die Logik von *Schließer* auf *Öffner* umstellen. Als *Schließer* konfiguriert, gibt der Eingang einen logischen High-Pegel ab, sollte das Bit "1" sein. Bei der *Öffner* -Konfiguration wird bei einer "1" im Objekt **60FE**_h entsprechend ein logischer Low-Pegel ausgegeben.
- **3250**_h:03_h: Ist hier ein Bit gesetzt, wird der Ausgang manuell gesteuert. Der Wert für den Ausgang steht dann in Objekt **3250**_h:4_h, dies ist auch für den Bremsenausgang möglich.
- **3250**_h:04_h: Die Bits in diesem Objekt geben den Ausgabewert vor, welcher am Ausgang angelegt sein soll, wenn die manuelle Steuerung des Ausgangs über das Objekt **3250**_h:03_h aktiviert ist.
- 3250_h:05_h: Dieses Objekt besitzt keine Funktion und ist aus Gründen der Kompatibilität enthalten.

Verrechnung der Ausgänge

Beispiel für die Verrechnung der Bits für die Ausgänge:


Output Routing

Prinzip

Der "Output Routing Mode" weist einem Ausgang eine Signalquelle zu, ein Kontrollbit im Objekt **60FE**_h:01_h schaltet das Signal ein oder aus.

Die Auswahl der Quelle wird mit 3252_h :01 bis 05 im "High Byte" (Bit 15 bis Bit 8) gemacht. Die Zuordnung eines Kontrollbit aus dem Objekt $60FE_h$:01_h erfolgt im "Low Byte" (Bit 7 bis Bit 0) des 3252_h :01_h bis 05 (siehe nachfolgende Abbildung).

Aktivierung

Dieser Modus wird aktiviert, indem das Objekt 3250_h:08_h (Routing Enable) auf 1 gesetzt wird.

Hinweis

Die Einträge **3250**_h:01_h bis **3250**:04_h haben dann **keine** Funktion mehr, bis das "Ausgangsrouting" wieder abgeschaltet wird.

Routing

Der Subindex des Objekts **3252**_h bestimmt, welche Signalquelle auf welchen Ausgang geroutet wird. Die Zuordnung der Ausgänge ist nachfolgend gelistet:

Subindex 3252 _h	Output Pin
01 _h	Konfiguration des PWM-Ausgangs (falls verfügbar)
02 _h	Konfiguration des Ausgangs 1
03 _h	Konfiguration des Ausgangs 2 (falls verfügbar)
04 _h	Konfiguration des Ausgangs 3 (falls verfügbar)
05 _h	Konfiguration des Ausgangs 4 (falls verfügbar)

Hinweis

Die maximale Ausgangsfrequenz des Ausgangs 1 und Ausgangs 2 ist 10kHz, des PWM-Ausgangs 2 kHz. Alle anderen Ausgänge können nur bis zu 500Hz Signale erzeugen.

Die Subindizes **3252**_h:01_h bis 05_h sind 16 Bit breit, wobei das High Byte die Signalquelle auswählt (z.B. den PWM-Generator) und das Low Byte bestimmt das Kontrollbit im Objekt **60FE**_h:01.

Bit 7 von **3252**_h:01_h bis 05 invertiert die Steuerung aus dem Objekt **60FE**_h:01. Normalerweise schaltet der Wert "1" im Objekt **60FE**_h:01 das Signal "ein", ist das Bit 7 gesetzt, schaltet der Wert "0" das Signal ein.

Nummer in 3252:01 bis 05	
00XX _h	Ausgang ist immer "1"
01XX _h	Ausgang ist immer "0"
02XX _h	Encodersignal (6063 _h) mit Frequenzteiler 1
03XX _h	Encodersignal (6063 _h) mit Frequenzteiler 2
04XX _h	Encodersignal (6063 _h) mit Frequenzteiler 4
05XX _h	Encodersignal (6063 _h) mit Frequenzteiler 8
06XX _h	Encodersignal (6063 _h) mit Frequenzteiler 16
07XX _h	Encodersignal (6063 _h) mit Frequenzteiler 32
08XX _h	Encodersignal (6063 _h) mit Frequenzteiler 64
09XX _h	Position Actual Value (6064h) mit Frequenzteiler 1
0AXX _h	Position Actual Value (6064h) mit Frequenzteiler 2
0BXX _h	Position Actual Value (6064 _h) mit Frequenzteiler 4
0CXX _h	Position Actual Value (6064h) mit Frequenzteiler 8
0DXX _h	Position Actual Value (6064h) mit Frequenzteiler 16
0EXX _h	Position Actual Value (6064h) mit Frequenzteiler 32
0FXX _h	Position Actual Value (6064h) mit Frequenzteiler 64
10XX _h	PWM-Signal, das mit Objekt 2038 _h :05 _h und 06 _h konfiguriert wird
11XX _h	Invertiertes PWM-Signal, das mit Objekt 2038 _h :05 _h und 06 _h konfiguriert wird

Beispiel

Das Encodersignal (6063_h) soll auf Ausgang 1 mit einem Frequenzteiler 4 gelegt werden. Der Ausgang soll mit Bit 5 des Objektes 60FE:01 gesteuert werden.

- $3250_h:08_h = 1$ (Routing aktivieren)
- $3252_h:02_h = 0405_h (04XX_h + 0005_h)$ Dabei ist:
- 04XX_h: Encodersignal mit Frequenzteiler 4
- 0005_h: Auswahl von Bit 5 des **60FE**:01

Das Einschalten des Ausgangs wird mit dem Setzen des Bit 5 in Objekt 60FE:01 erledigt.

Beispiel

Das Bremsen-PWM-Signal soll auf Ausgang 2 gelegt werden. Da die automatische Bremsensteuerung das Bit 0 des **60FE**:01_h benutzt, soll dieses als Kontrollbit benutzt werden

- $3250_h:08_h = 1$ (Routing aktivieren)
- $3252_h:03_h = 1080_h (=10XX_h + 0080_h)$. Dabei gilt:
 - 10XX_h: Bremsen-PWM-Signal
 - 0080_h: Auswahl des invertierten Bits 0 des Objekts **60FE**:01

7.2 Automatische Bremsensteuerung

7.2.1 Beschreibung

Die automatische Bremsensteuerung wird aktiv, wenn die Steuerung in den Zustand *Operation Enabled* der **CiA 402 Power State Machine** gebracht wird, sonst bleibt die Bremse immer geschlossen.

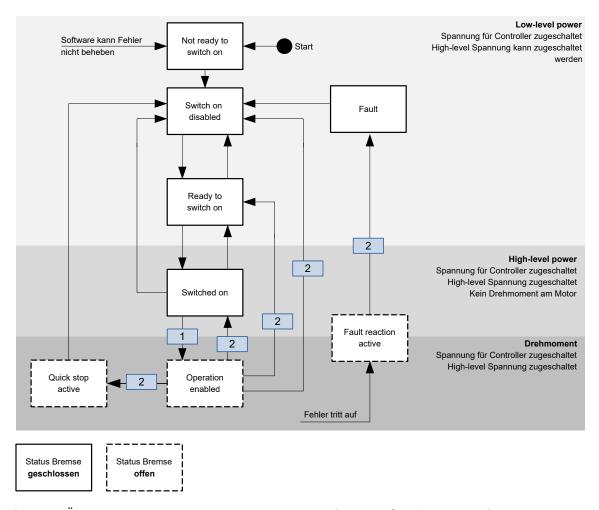
Der Bremsen-Ausgang der Steuerung resultiert in einem PWM-Signal, welches sich in der Frequenz und in dem Tastverhältnis einstellen lässt.

Für das Zusammenspiel der Bremse mit dem Motorstoppverhalten, lesen Sie auch das Kapitel **Power State machine - Bremsreaktionen**.

7.2.2 Aktivierung und Anschluss

Die Bremse kann entweder automatisch oder manuell gesteuert werden:

- Automatisch: Bit 2 des Objekts 3202h auf "1" setzen aktiviert die Bremsensteuerung.
- Manuell: Bit 2 des Objekts **3202**_h auf "0" setzen deaktiviert die Bremsensteuerung, die Bremse lässt sich jetzt mit dem Bit 0 im Objekt **60FE**_h:01_h kontrollieren.


Anschluss

Der Bremsenausgang befindet sich am Stecker X4 (siehe Kapitel Stecker X4 – Bremsen-Anschluss)

7.2.3 Steuerung der Bremse

Die nachfolgende Grafik zeigt die Zustände der **CiA 402 Power State Machine** zusammen mit den Zuständen der Bremse für den automatischen Modus.

Bei dem Übergang, welcher mit 1 markiert ist, werden folgende Schritte durchgeführt:

- 1. Der Motorstrom wird eingeschaltet.
- 2. Die Zeit, welche in 2038_h:3_h hinterlegt wird, wird abgewartet.
- 3. Die Bremse löst sich.
- 4. Die Zeit, welche in 2038_h:4_h hinterlegt wird, wird abgewartet.
- 5. Der Zustand Operation Enabled wird erreicht, die Motorsteuerung kann Fahrbefehle umsetzen.

Bei allen Übergängen, welche mit 2 markiert sind, werden folgende Schritte durchgeführt:

- 1. Der Motor wird zum Stillstand gebracht.
- 2. Die Zeit, welche in 2038_h:1_h hinterlegt wird, wird abgewartet.
- 3. Die Bremse wird aktiviert.
- 4. Die Zeit, welche in 2038_h:2_h hinterlegt wird, wird abgewartet.
- 5. Der Motorstrom wird abgeschaltet.

7.2.4 Bremsen-PWM

Die eingeschaltete Bremse erzeugt am Ausgang der Steuerung ein PWM-Signal, welches im Tastgrad und der Frequenz eingestellt werden kann. Sollte ein Ausgangspin ohne PWM benötigt werden, lässt sich ein Tastgrad von 100 Prozent einstellen.

Hinweis

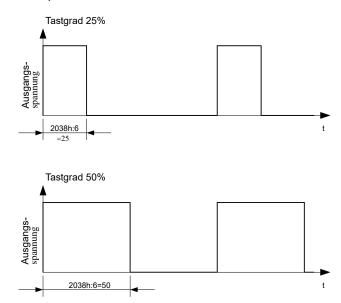
Der PIN *Bremse* + des Bremsenausgangs ist mit der Spannungsversorgung der Steuerung verbunden.

Wenn die Betriebsspannung der Bremse größer als die Versorgungsspannung der Steuerung ist, können Sie den Bremsenausgang der Steuerung nicht nutzen, Sie müssen die Bremse extern versorgen.

Wenn die Versorgungsspannung der Steuerung größer als die Betriebsspannung der Bremse ist (und bis 48 V DC), wird empfohlen, den PWM-Regler von Nanotec mit der Bestellbezeichnung *EB-BRAKE-48V* zu verwenden und den Tastgrad des Bremsenausgangs der Steuerung auf "100" zu setzen.

Frequenz

Die Frequenz der Bremsen-PWM kann im Objekt **2038**_h:5_h eingestellt werden. Die Einheit ist Hertz, ein Wert größer 2000 ist nicht möglich.


Hinweis

Sollte das PWM-Signal der Bremse störende Geräusche verursachen, so kann dies durch Parallelschaltung eines $47\,\mu\text{F}\dots 100\,\mu\text{F}$ Kondensators am Bremsenausgang behoben werden.

Tastgrad

Der Tastgrad - das Verhältnis Impuls- zu Periodendauer - wird im **2038**_h:6_h eingestellt. Der Wert wird als Prozentzahl angesehen und kann zwischen 2 und 100 gewählt werden. Bei einem Wert von 100 ist der Ausgangspin dauerhaft eingeschaltet.

In nachfolgender Abbildung ist beispielhaft ein Tastgrad von 25 und 50 Prozent eingezeichnet, wobei die Frequenz beibehalten wurde.

7.3 l²t Motor-Überlastungsschutz

7.3.1 Beschreibung

Hinweis

Für Schrittmotoren wird nur der Nennstrom und kein Maximalstrom angegeben. Daher erfolgt die Nutzung von l²t mit Schrittmotoren ohne Gewähr.

Das Ziel des I²t Motor-Überlastungsschutz ist es, den Motor vor einem Schaden zu bewahren und gleichzeitig, ihn normal bis zu seinem thermischen Limit zu betreiben.

Diese Funktion ist nur verfügbar, wenn sich die Steuerung in der **Closed Loop-Betriebsart** befindet (Bit 0 des Objekts **3202**_h muss auf "1" gesetzt sein).

Es gibt eine Ausnahme: Sollte l²t im *Open Loop*-Betrieb aktiviert sein, wird der Strom auf den eingestellten Nennstrom begrenzt, auch wenn der eingestellte Maximalstrom größer ist. Diese Funktion wurde aus Sicherheitsgründen implementiert, damit man auch aus dem *Closed Loop*-Betrieb mit sehr hohem kurzzeitigem Maximalstrom in den *Open Loop*-Betrieb wechseln kann, ohne den Motor zu schädigen.

7.3.2 Objekteinträge

Folgende Objekte haben Einfluss auf den I²t Motor-Überlastungsschutz:

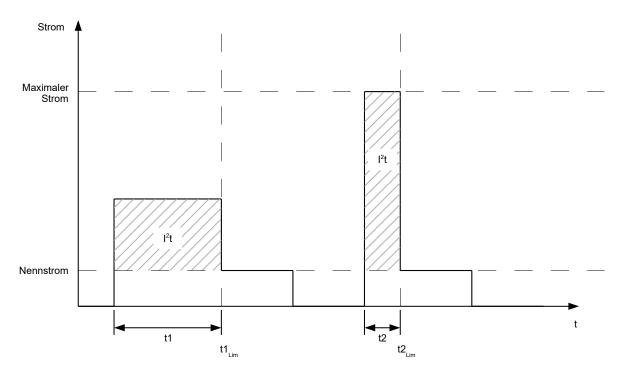
- 2031_h: Peak Current Gibt den Maximalstrom in mA an.
- 203B_h:1_h Nominal Current Gibt den Nennstrom in mA an.
- 203B_h:2_h Maximum Duration Of Peak Current Gibt die maximale Dauer des Maximalstroms in ms an.

Folgende Objekte zeigen den gegenwärtigen Zustand von I²t an:

- 203B_h:3_h Threshold Gibt die Grenze in mAs an, von der abhängt, ob auf Maximalstrom oder Nennstrom geschaltet wird.
- **203B**_h:4_h CalcValue Gibt den berechneten Wert an, welcher mit Threshold verglichen wird, um den Strom einzustellen.
- 203B_h:5_h LimitedCurrent Zeigt den gegenwärtigen Stromwert an, der von I²t eingestellt wurde.
- 203B_h:6_h Status:
 - Wert = "0": I²t deaktiviert
 - Wert = "1": I²t aktiviert

7.3.3 Aktivierung

Der *Closed Loop* muss aktiviert sein (Bit 0 des Objekts **3202**_h auf "1" gesetzt, siehe auch Kapitel **Closed Loop**). Zum Aktivieren des Modus müssen die drei oben genannten Objekteinträge (**2031**_h, **203B**_h:1_h, **203B**_h:2_h) sinnvoll beschrieben worden sein. Das bedeutet, dass der Maximalstrom größer als der Nennstrom sein muss und ein Zeitwert für die maximale Dauer des Maximalstroms eingetragen sein muss. Wenn diese Bedingungen nicht erfüllt sind, bleibt die I²t Funktionalität deaktiviert.


7.3.4 Funktion von I²t

Durch die Angabe von Nennstrom, Maximalstrom und maximaler Dauer des Maximalstromes wird ein I²T_{L im} berechnet.

Der Motor kann solange mit Maximalstrom laufen, bis das berechnete I^2T_{Lim} erreicht wird. Darauffolgend wird der Strom sofort auf Nennstrom gesenkt.

Im folgenden Diagramm sind die Zusammenhänge noch einmal dargestellt.

Im ersten Abschnitt t1 ist der Stromwert höher als der Nennstrom. Am Zeitpunkt t1_{Lim} wird l²t_{Lim} erreicht und der Strom wird auf Nennstrom begrenzt. Danach kommt während der Dauer t2 ein Strom, der dem Maximalstrom entspricht. Dementsprechend ist der Wert für l²t_{Lim} schneller erreicht, als im Zeitraum t1.

7.4 Objekte speichern

Hinweis

Die unsachgemäße Anwendung dieser Funktion kann dazu führen, dass die Steuerung sich nicht mehr starten lässt. Lesen Sie daher vor der Benutzung der Funktion das Kapitel vollständig durch.

7.4.1 Allgemeines

Viele Objekte im Objektverzeichnis lassen sich speichern und werden beim nächsten Einschalten/ Reset automatisch wieder geladen. Zudem bleiben die gespeicherten Werte auch bei einem Firmware-Update erhalten.

Es lassen sich immer nur ganze Sammlungen von Objekten (im Folgenden *Kategorien* genannt) zusammen abspeichern, einzelne Objekte können nicht gespeichert werden.

Ein Objekt kann einer der folgenden Kategorien zugeordnet sein:

- Kommunikation: Parameter mit Bezug auf externe Schnittstellen, wie PDO-Konfiguration etc.
- Applikation: Parameter mit Bezug auf Betriebsmodi.
- Benutzer: Parameter, die ausschließlich vom Kunden/Benutzer geschrieben und gelesen, und von der Steuerungsfirmware ignoriert werden.
- Bewegung: Parameter mit Bezug auf den Motor und die Sensoren (BLDC/Stepper, Closed/Open Loop...). Einige werden vom Auto-Setup gesetzt und gespeichert.
- Tuning: Parameter mit Bezug auf Motor und Encoder, die entweder vom Auto-Setup gesetzt werden, oder den Datenblättern entnommen werden können, zum Beispiel Polpaare und Maximum Current.
- Modbus RTU: Parameter mit Bezug auf die Modbus RTU-Kommunikation
- Ethernet: Parameter mit Bezug auf die Ethernet-Kommunikation

Wenn ein Objekt keiner dieser *Kategorien* zugeordnet ist, kann es nicht gespeichert werden, zum Beispiel Statusword und alle Objekte, deren Wert abhängig vom aktuellen Zustand der Steuerung ist.

Die Objekte in jeder *Kategorie* werden unten aufgelistet. Im Kapitel **Objektverzeichnis Beschreibung** wird ebenfalls für jedes Objekt die zugehörige *Kategorie* angegeben.

7.4.2 Kategorie: Kommunikation

- 2102_h: Fieldbus Module Control
- 3502_h: MODBUS Rx PDO Mapping
- 3602_h: MODBUS Tx PDO Mapping

7.4.3 Kategorie: Applikation

- 2034_h: Upper Voltage Warning Level
- 2035_h: Lower Voltage Warning Level
- 2036_h: Open Loop Current Reduction Idle Time
- 2037_h: Open Loop Current Reduction Value/factor
- 2038_h: Brake Controller Timing
- 203A_h: Homing On Block Configuration
- 203D_h: Torque Window
- 203E_h: Torque Window Time Out
- 203F_h: Max Slippage Time Out
- 2056_h: Limit Switch Tolerance Band
- 2057_h: Clock Direction Multiplier
- 2058_h: Clock Direction Divider
- 205B_h: Clock Direction Or Clockwise/Counter Clockwise Mode
- 2084_h: Bootup Delay
- 2300_h: NanoJ Control
- 2410_h: NanoJ Init Parameters
- 2800_h: Bootloader And Reboot Settings
- 3210_h: Motor Drive Parameter Set
- 3212_h: Motor Drive Flags
- 3221_h: Analogue Inputs Control
- 3240_h: Digital Inputs Control
- 3242_h: Digital Input Routing
- 3243_h: Digital Input Homing Capture
- **3250**_h: Digital Outputs Control
- 3252h: Digital Output Routing
- 3321_h: Analogue Input Offset
- 3322_h: Analogue Input Pre-scaling
- 3700_h: Deviation Error Option Code
- 4013_h: HW Configuration
- 6040_h: Controlword
- 6042_h: VI Target Velocity
- 6046_h: VI Velocity Min Max Amount
- 6048_h: VI Velocity Acceleration
- 6049_h: VI Velocity Deceleration
- 604A_h: VI Velocity Quick Stop
- 604C_h: VI Dimension Factor
- 605A_h: Quick Stop Option Code
- 605B_h: Shutdown Option Code
- **605C**_h: Disable Option Code
- 605D_h: Halt Option Code

- 605Eh: Fault Option Code
- 6060_h: Modes Of Operation
- 6065_h: Following Error Window
- 6066_h: Following Error Time Out
- 6067_h: Position Window
- 6068_h: Position Window Time
- 606D_h: Velocity Window
- 606E_h: Velocity Window Time
- 6071_h: Target Torque
- 6072_h: Max Torque
- 607A_h: Target Position
- 607B_h: Position Range Limit
- 607C_h: Home Offset
- 607D_h: Software Position Limit
- 607E_h: Polarity
- 607F_h: Max Profile Velocity
- 6081_h: Profile Velocity
- 6082_h: End Velocity
- 6083_h: Profile Acceleration
- 6084_h: Profile Deceleration
- 6085_h: Quick Stop Deceleration
- 6086_h: Motion Profile Type
- 6087_h: Torque Slope
- 6091_h: Gear Ratio
- 6092_h: Feed Constant
- 6096_h: Velocity Factor
- 6097_h: Acceleration Factor
- 6098_h: Homing Method
- 6099_h: Homing Speed
- 609A_h: Homing Acceleration
- 60A2_h: Jerk Factor
- 60A4_h: Profile Jerk
- 60A8_h: SI Unit Position
- 60A9_h: SI Unit Velocity
- **60B0**_h: Position Offset
- 60B1_h: Velocity Offset
- 60B2_h: Torque Offset
- 60C1_h: Interpolation Data Record
- 60C2_h: Interpolation Time Period
- 60C4_h: Interpolation Data Configuration
- 60C5_h: Max Acceleration
- 60C6_h: Max Deceleration
- 60E8_h: Additional Gear Ratio Motor Shaft Revolutions
- 60E9_h: Additional Feed Constant Feed
- 60ED_h: Additional Gear Ratio Driving Shaft Revolutions
- 60EE_h: Additional Feed Constant Driving Shaft Revolutions
- 60F2_h: Positioning Option Code
- 60F8_h: Max Slippage
- 60FE_h: Digital Outputs
- 60FF_h: Target Velocity

7.4.4 Kategorie: Benutzer

2701_h: Customer Storage Area

7.4.5 Kategorie: Bewegung

- 3202_h: Motor Drive Submode Select
- 3203_h: Feedback Selection

7.4.6 Kategorie: Tuning

- 2030_h: Pole Pair Count
- 2031_h: Maximum Current
- 203B_h: I2t Parameters
- 2059_h: Encoder Configuration
- 3390_h: Feedback Hall
- 33A0_h: Feedback Incremental A/B/I 1
- 6075_h: Motor Rated Current
- 6080_h: Max Motor Speed
- 608Fh: Position Encoder Resolution
- **6090**_h: Velocity Encoder Resolution
- **60E6**_h: Additional Position Encoder Resolution Encoder Increments
- 60EB_h: Additional Position Encoder Resolution Motor Revolutions

7.4.7 Kategorie: Modbus RTU

- 2028_h: MODBUS Slave Address
- 202A_h: MODBUS RTU Baudrate
- 202D_h: MODBUS RTU Parity

7.4.8 Kategorie: Ethernet

- 2010_h: IP-Configuration
- 2011_h: Static-IPv4-Address
- 2012_h: Static-IPv4-Subnet-Mask
- 2013_h: Static-IPv4-Gateway-Address

7.4.9 Speichervorgang starten

VORSICHT

Unkontrollierte Motorbewegungen!

Während des Speicherns kann die Regelung beeinträchtigt werden. Es kann zu unvorhersehbaren Reaktionen kommen.

▶ Bevor Sie den Speichervorgang starten, muss der Motor sich im Stillstand befinden. Der Motor darf während des Speicherns nicht angefahren werden.

Hinweis

- Das Speichern kann einige Sekunden dauern. Unterbrechen Sie während des Speicherns keinesfalls die Spannungsversorgung. Andernfalls ist der Stand der gespeicherten Objekte undefiniert.
- Warten Sie immer, dass die Steuerung das erfolgreiche Speichern mit dem Wert "1" in dem entsprechenden Subindex im Objekt 1010_h signalisiert.

104

Für jede *Kategorie* gibt es einen Subindex im Objekt **1010**_h. Um alle Objekte dieser *Kategorie* zu speichern, muss der Wert "65766173_h" ¹ in den Subindex geschrieben werden. Das Ende des Speichervorgangs wird signalisiert, indem der Wert von der Steuerung durch eine "1" überschrieben wird.

Nachfolgende Tabelle listet auf, welcher Subindex des Objektes **1010**_h für welche *Kategorie* zuständig ist

Subindex	Kategorie
01 _h	Alle Kategorien mit der Ausnahme von 06_h (Tuning) , $0B_h$ (Modbus RTU) und $0C_h$ (Ethernet)
02 _h	Kommunikation
03 _h	Applikation
04 _h	Benutzer
05 _h	Bewegung
06 _h	Tuning
0B _h	Modbus RTU
0C _h	Ethernet

7.4.10 Speicherung verwerfen

Falls alle Objekte oder eine *Kategorie* an gespeicherten Objekten gelöscht werden sollen, muss in das Objekt **1011**_h der Wert "64616F6C_h" ² geschrieben werden. Folgende Subindizes entsprechen dabei einer *Kategorie*:

Subindex	Kategorie
01 _h	Alle Kategorien (Zurücksetzen auf Werkseinstellung) mit der Ausnahme von 06_h (Tuning) , $0B_h$ (Modbus RTU) und $0C_h$ (Ethernet)
02 _h	Kommunikation
03 _h	Applikation
04 _h	Benutzer
05 _h	Bewegung
06 _h	Tuning
0B _h	Modbus RTU
0C _h	Ethernet

Die gespeicherten Objekte werden daraufhin verworfen, die Änderung wirkt erst nach einem Neustart der Steuerung aus. Sie können sie Steuerung neu starten, indem Sie den Wert "746F6F62_h" in **2800**_h:01_h eintragen.

Das entspricht dezimal der 1702257011_d bzw. dem ASCII String save.

² Das entspricht dezimal der 1684107116_d bzw. dem ASCII String load.

Hinweis

- Die Objekte der Kategorie 06_h (Tuning) werden vom Auto-Setup ermittelt und werden beim Zurücksetzen auf Werkseinstellungen mittels Subindex 01_h nicht zurückgesetzt (damit eine erneutes Auto-Setup nicht notwendig wird). Sie können diese Objekte mit Subindex 06_h zurücksetzen.
- Die Objekte der Kategorie 0C_h (Ethernet) werden mittels Subindex 01_h nicht zurückgesetzt.

7.4.11 Konfiguration verifizieren

Das Objekt **1020**_h kann herangezogen werden, um die Konfiguration zu verifizieren. Es agiert wie ein Modifkationsmarker in üblichen Text-Editoren: Sobald eine Datei in dem Editor modifiziert wird, wird ein Marker (normalerweise ein Stern) hinzugefügt.

Die Einträge des Objektes 1020_h können mit einem Datum und einer Uhrzeit beschrieben und anschließend über 1010_h :01 zusammen mit allen anderen speicherbaren Objekten gespeichert werden.

Die Einträge von 1020_h werden auf "0" zurückgesetzt, sobald ein beliebiges speicherbares Objekt (einschließlich 1010_h :0 x_h , außer 1010_h :0 1_h und 1020_h) beschrieben wird.

Die folgende Reihenfolge macht die Verifikation möglich:

- 1. Ein externes Tool oder Master konfiguriert die Steuerung.
- 2. Das Tool oder der Master setzt den Wert in das Objekt 1020h.
- 3. Das Tool oder der Master aktiviert das Speichern aller Objekte 1010_h:01_h = 65766173_h. Das Datum und die Uhrzeit im Objekt 1020_h werden ebenfalls abgespeichert.

Nach einem Neustart der Steuerung kann der Master den Wert in **1020**_h:01_h und **1020**:01_h prüfen. Sollte einer der Werte "0" sein, wurde das Objektverzeichnis verändert, nachdem die gespeicherten Werte geladen wurden. Sollten das Datum oder die Uhrzeit in **1020** nicht den erwarteten Werten entsprechen, wurden Objekte wahrscheinlich mit anderen als den erwarteten Werten gespeichert.

8 Modbus RTU

Modbus-Referenzen: www.modbus.org.

- MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3, Date: 26.04.2014, Version: 1.1b3
- MODBUS over Serial Line Specification and Implementation Guide V1.02, Date: 20.12.2006, Version: 1.02

Die Steuerung lässt sich mittels Modbus RTU ansprechen. Die I/O Daten mit den z.B. vorkonfigurierten Antriebsgrößen (siehe **Prozessdatenobjekte (PDO)**) können mit den Standard Modbus-Funktionscodes durchgeführt werden. Um aber eigene I/O Daten zu konfigurieren, muss der Funktionscode 2Bh (CAN Encapsulation) vom Master unterstützt werden, damit die Parameter unabhängig vom Prozessabbild gelesen und beschrieben werden können.

Wenn der Master diesen Funktionscode nicht unterstützt, kann über das *Plug & Drive Studio* die Konfiguration des I/O Abbildes durchgeführt und gespeichert werden sodass der Master dann über die Standard-Modbus-Funktionscodes auf die Daten zugreifen kann.

8.1 RS-485

Die elektrische Schnittstelle "Two-Wire Modbus Interface" in Übereinstimmung mit dem Standard EIA/TIA-485 (RS-485) wird von der Steuerung unterstützt.

8.2 Modbus Modicon-Notation bei SPS

Viele SPS verwenden das Modicon-Adressierungsmodel. Im Modbus Standard kommt diese Notation nicht vor.

Folgende Adress-Notation ist bei Nanotec Steuerungen relevant:

- Input Register 30001 39999 wird auf Modbus Telegram Adresse 0 (0_h) 9998 (270E_h) gemappt.
- Holding Register 40001- 49999 wird auf Modbus Telegram Adresse 0 (0h) 9998 (270Eh) gemappt.

Hinweis

Wenn im Handbuch von Modbus-Adressen gesprochen wird, müssen evtl. in der SPS die Register-Adressen nach *Modicon-Notation* eingesetzt werden.

8.3 Allgemeines

Modbus ist generell Big-Endian basiert.

Die einzigen Ausnahmen bilden dabei die Kommandos mit den Funktionscodes 43 (2B_h), 101 (65_h) und 102 (66_h) welche auf CANopen basieren. Für die Datenwerte dieser Kommandos gilt das Little-Endian Format. Die restliche Modbus Nachricht ist hingegen nach wie vor Big-Endian basiert.

Beispiel

Kommando 2B_h: Mit diesem Kommando wird der Wert 12345678_h in das Objekt 0123_h (existiert nicht) geschrieben:

SA	FC	Daten								CRC								
05	2В	0 D	01	00	01	23	01	00	00	00	00	04	78	56	34	12	67	35

SA

Slave-Adresse

FC

Funktionscode

Daten

Datenbereich, Decodierung ist abhängig vom benutzen Funktionscode

CRC

Cyclic redundancy check

8.4 Kommunikationseinstellungen

Slave-Adresse, Baudrate und Parität ergeben sich abhängig von der Position der *Drehschalter* S1 und S2 und ggf. noch von den Objekten **2028**_h, **202D**_h.

Konfiguration	Objekt	Wertebereich	Werkseinstellung
Slave Adresse	2028 _h	1 bis 247	5
Baudrate	202A _h	7200 bis 256000	19200
Parity	202D _h	None: 0x00Even: 0x04Odd: 0x06	0x04 (Even)

Die Anzahl der Datenbits ist dabei immer "8". Die Anzahl der Stop-Bits ist abhängig von der Parity-Einstellung:

- Keine Parity: 2 Stop Bits
- "Even" oder "Odd" Parity: 1 Stop Bit

Unterstützt werden folgende Baudraten:

- 7200
- 9600
- 14400
- 19200
- 38400
- 56000
- 57600
- 115200
- 128000
- 256000

8.4.1 Drehschalter

Die N5 verfügt über zwei Hex-Codierschalter - ähnlich wie in der nachfolgenden Abbildung.

Mit der Zahlenkombination aus beiden Drehschaltern können Sie die Quelle für die Slave-Adresse, die Baudrate und die Parität einstellen.

Dabei gilt: die Zahlenkombination setzt sich aus beiden Drehschalter S1 und S2 zusammen, wobei S1 das höherwertigere Byte darstellt und S2 entsprechend das niederwertigere Byte

Beispiel

Schalter S1 steht auf dem Wert " 0_h ", Schalter S2 auf dem Wert " F_h ", daraus ergibt sich der Wert " $0F_h$ "=" 16_d ".

Schalter S1 steht auf dem Wert " A_h ", Schalter S2 auf dem Wert " 1_h ", daraus ergibt sich der Wert " $A1_h$ "=" 161_d ".

Zahlenko Drehsch	ombination der alter	Slave-Adresse	Baudrate und Parität		
dec	hex				
0	0	Objekt 2028 _h	Objekt 202A _h bzw. 202D _h		
1-247	1-F7	Zahl der Drehschalter	Objekt 202A _h bzw. 202D _h		
248-255	F8-FF	5	19200, even Parity		

8.5 Funktionscodes

Die folgenden "Funktionscodes" werden unterstützt:

	Name	Funktionscode	Unterfunktions-
			code
Datenzugriff (16-	Read Holding Registers	03 (03 _h)	_
bit)	Read Input Register	04 (04 _h)	
	Write Single Register	06 (06 _h)	
	Write Multiple Registers	22 (16 _h)	
	Read/Write Multiple Registers	23 (17 _h)	
Diagnose	Clear Counters and Diagnostic Register	08 (08 _h)	10 (0A _h)
	Return Bus Message Count	08 (08 _h)	11 (0B _h)
	Return Bus Communication Error Count	08 (08 _h)	12 (0C _h)
	Return Bus Exception Error Count	08 (08 _h)	13 (0D _h)
	Return Server Message Count	08 (08 _h)	14 (0E _h)
	Return Server No Response Count	08 (08 _h)	15 (0F _h)
	Return Server NAK Count	08 (08 _h)	16 (10 _h)
	Return Server Busy Count	08 (08 _h)	17 (11 _h)
	Return Bus Character Overrun Count	08 (08 _h)	18 (12 _h)
Sonstiges	Encapsulated Interface Transport	43 (2B _h)	13 (0D _h)
	Read complete object dictionary start	101 (65 _h)	85 (55 _h)
	Read complete object dictionary next	101 (65 _h)	170 (AA _h)
	Read complete array or record start	102 (66 _h)	85 (55 _h)
	Read complete array or record next	102 (66 _h)	170 (AA _h)

8.6 Funktioncode-Beschreibungen

8.6.1 FC 3 (03_h) Read Input Registers / FC 4 (04_h) Read Holding Registers

Mit diesem Funktionscode können ein 16-Bit-Wert oder mehrere 16-Bit-Werte ausgelesen werden. Die Funktion kann auf die NanoJ-Objekte (siehe **NanoJ-Objekte**) oder Prozessdatenobjekte (min. 4 Byte Ausrichtung, siehe **Prozessdatenobjekte** (**PDO**)) angewendet werden.

Request	·		
Name	Länge	Wert	
Slave-Adresse	1 Byte		
Funktionscode	1 Byte	03 _h / 04 _h	
Startadresse	2 Bytes	0000 _h bis FFFF _h	
Anzahl der Register	2 Bytes	1 bis (7D _h)	
CRC	2 Bytes		

Response ("M" entspricht der Anzahl der zu lesenden Register)				
Name	Länge	Wert		
Slave-Adresse	1 Byte			
Funktionscode	1 Byte	03 _h / 04 _h		
Anzahl Bytes	1 Byte	2 * M		
Registerwert	2 Bytes			
CRC	2 Bytes			

Fehler				
Name	Länge	Wert		
Slave-Adresse	1 Byte			
Fehlercode	1 Byte	83 _h / 84 _h		
Ausnahmecode	1 Byte	01, 02, 03 oder 04		
CRC	2 Bytes			

Beispiel

Nachfolgend ein Beispiel eines Lese-Request und Response des Registers 5000 (1388_h) und des folgenden Registers (2 Register):

Request

SA	FC	Daten			CF	RC	
05	03	13	88	00	02	41	21

Response

SA	FC	Daten			CRC			
05	03	04	02	40	00	00	41	21

8.6.2 FC 6 (06_h) Write Single Register

Mit diesem Funktionscode kann ein einzelner 16-Bit-Wert geschrieben werden. Die Funktion kann auf Prozessdatenobjekte (siehe **Prozessdatenobjekte (PDO)**) angewendet werden.

Request			
Name	Länge	Wert	
Slave-Adresse	1 Byte		
Funktionscode	1 Byte	06 _h	
Registeradresse	2 Bytes	0000 _h bis FFFF _h	
Registerwert	2 Bytes	0000 _h bis FFFF _h	
CRC	2 Bytes		

Response	, ,		
Name	Länge	Wert	
Slave-Adresse	1 Byte		
Funktionscode	1 Byte	06 _h	
Registeradresse	2 Bytes	0000 _h bis FFFF _h	
Registerwert	2 Bytes	0000 _h bis FFFF _h	
CRC	2 Bytes		

Fehler		
Name	Länge	Wert
Slave-Adresse	1 Byte	
Fehlercode	1 Byte	86 _h
Ausnahmecode	1 Byte	01, 02, 03 oder 04
CRC	2 Bytes	

Beispiel

Nachfolgend ein Beispiel eines Write-Request und Response in das Register 6000 (1770 $_{\rm h}$) mit dem Wert "0001 $_{\rm h}$ ":

Request

SA	FC	Daten			CF	RC	
05	06	17	70	00	01	4 D	E1

Response

SA	FC	Daten			CRC		
05	06	17	70	00	01	4 D	E1

8.6.3 FC 16 (10_h) Write Multiple Registers

Mit diesem Funktionscode können ein einzelner 16-Bit-Wert oder mehrere 16-Bit-Werte geschrieben werden. Die Funktion kann auf NanoJ-Objekte (siehe **NanoJ-Objekte**) oder Prozessdatenobjekte (siehe **Prozessdatenobjekte** (**PDO**)) angewendet werden.

Request ("N" ist die Anzahl der zu schreibenden Register)				
Name	Länge	Wert		
Slave-Adresse	1 Byte			
Funktionscode	1 Byte	10 _h		
Startadresse	2 Bytes	0000 _h bis FFFF _h		
Anzahl der Register	2 Bytes	0001 _h bis 007B _h		
Anzahl Bytes	1 Byte	2 * N		
Registerwert	N * 2 Bytes			
CRC	2 Bytes			

Response			
Name	Länge	Wert	
Slave-Adresse	1 Byte		
Funktionscode	1 Byte	10 _h	
Startadresse	2 Bytes	0000 _h bis FFFF _h	
Anzahl der Register	2 Bytes	0001 _h bis 007B _h	
CRC	2 Bytes		

Fehler		
Name	Länge	Wert
Slave-Adresse	1 Byte	
Fehlercode	1 Byte	90 _h
Ausnahmecode	1 Byte	01, 02, 03 oder 04
CRC	2 Bytes	

Beispiel

Nachfolgend ein Beispiel eines Mehrfach-Schreibens der Werte $"0102_h"$ und $"0304_h"$ startend ab Registeradresse 6000 (1770_h), Anzahl der Register ist 2, Länge der Daten 4:

Request

SA	FC		Daten								CF	RC
05	10	17	70	00	02	04	01	02	03	04	AB	44

Response

SA	FC		Da	CF	₹C		
05	10	17	70	00	02	44	23

8.6.4 FC 17 (11_h) Report Server ID

Mit diesem Funktionscode kann man die Beschreibung des Typs, der gegenwärtigen Status und andere Informationen des Geräts auslesen.

Request			
Name	Länge	Wert	
Slave-Adresse	1 Byte		
Funktionscode	1 Byte	11 _h	
CRC	2 Bytes		

Response		
Name	Länge	Wert
Slave-Adresse	1 Byte	
Funktionscode	1 Byte	03 _h
Anzahl Bytes	1 Byte	01 _h
Run Indicator Status	1 Byte	$00_h = OFF, FF_h = ON$
Zusatzdaten		
CRC	2 Bytes	

Fehler			
Name	Länge	Wert	
Slave-Adresse	1 Byte		
Fehlercode	1 Byte	91 _h	
Ausnahmecode	1 Byte	01 oder 04	
CRC	2 Bytes		

Beispiel

Nachfolgend ein Beispiel eines Request/Response für ID und Status:

Request

SA	FC	CF	RC
05	11	C2	EC

Response

SA	FC	I	Date	CRC		
05	11	02	05	FF	0F	EC

8.6.5 FC 23 (17_h) Read/Write Multiple registers

Mit diesem Funktionscode können ein einzelner 16-Bit-Wert oder mehrere 16-Bit-Werte gleichzeitig gelesen und geschrieben werden. Die Funktion kann auf NanoJ-Objekte (siehe **NanoJ-Objekte**) oder Prozessdatenobjekte (siehe **Prozessdatenobjekte** (**PDO**)) angewendet werden.

Request ("N" ist die Anzahl der z	zu lesenden Register):				
Name	Länge	Wert				
Slave-Adresse	1 Byte	'				
Funktionscode	1 Byte	17 _h				
Lesen: Startadresse	2 Bytes	0000 _h bis FFFF _h				
Lesen: Anzahl Register	2 Bytes	0001 _h bis 0079 _h				
Schreiben: Startadresse	2 Bytes	0000 _h bis FFFF _h				
Schreiben: Anzahl Register	2 Bytes	0001 _h bis 0079 _h				
Schreiben: Anzahl Bytes	1 Byte	2 * N				
Schreiben: Registerwert	N * 2 Bytes					
CRC	2 Bytes					

Response ("M" entspricht de	Response ("M" entspricht der Anzahl der zu schreibenden Bytes):									
Name	Länge	Wert								
Slave-Adresse	1 Byte									
Funktionscode	1 Byte	17 _h								
Anzahl Bytes	1 Byte	2 * M								
Gelesene Register	M * 2 Bytes									
CRC	2 Bytes									

Fehler		
Name	Länge	Wert
Slave-Adresse	1 Byte	
Fehlercode	1 Byte	97 _h
Ausnahmecode	1 Byte	01, 02, 03 oder 04
CRC	2 Bytes	

Beispiel

Nachfolgend ein Beispiel für das Lesen von zwei Registern ab Register 5000 (1388 $_{\rm h}$) und für das Schreiben von zwei Registern ab Register 6000 (1770 $_{\rm h}$) mit 4 Bytes und den Daten "0102 $_{\rm h}$ " und "0304 $_{\rm h}$ ":

Request

SA	FC		Daten										CF	₹С		
05	17	13	88	00	02	17	70	00	02	04	01	02	03	04	56	6A

Response

SA	FC		Daten			CRC		
05	17	04	02	40	00	00	0F	EC

8.6.6 FC 8 (08_h) Diagnostics

Der Modbus-Funktionscode FC08 bietet eine Menge an Tests zum Überprüfen des Kommunikationssystems zwischen Client und Server oder zum Überprüfen verschiedener interner Fehlerzustände innerhalb des Servers.

Diese Funktion verwendet einen zwei Byte großen Unterfunktionscode im Request, um den Typen des Tests zu definieren. Der Server wiederholt in einer normalen Response beides, den Funktionsund den Unterfunktionscode. Einige der Diagnosen enthalten Daten des Gerätes im Datenfeld der normalen Antwort.

Request:

Name	Länge	Wert	
Funktionscode	1 Byte	08 _h	
Unterfunktionscode	2 Bytes		
Data	N x 2 Bytes		

Response:

Name	Länge	Wert	
Funktionscode	1 Byte	08 _h	
Unterfunktionscode	2 Bytes		
Data	N x 2 Bytes		

Fehler:

Name	Länge	Wert
Funktionscode	1 Byte	88 _h
Ausnahmecode	1 Bytes	01 oder 03 oder 04

FC 8.10 (08_h.0A_h) Clear Counters and Diagnostic Register

Das Ziel dieser Anfrage ist, alle Zähler und Diagnose-Register zurückzusetzten. Zähler werden auch beim Einschalten der Steuerung zurückgesetzt.

Unterfunktion	Datenbereich		
	Request	Resonse	
00 _h 0A _h	00 _h 00 _h	Echo der Anfragedaten	

Request

SA	FC		Daten			CRC	
05	08	00	0A	00	00	56	6A

Response

SA	FC	Daten				CRC	
05	08	00	0A	00	00	C1	8D

FC 8.11 (08_h.0B_h) Return Bus Message Count

Der Datenbereich der Antwort gibt die Anzahl der Nachrichten zurück, welche seit dem letzten Neustart, "Clear Counters and Diagnostic Register"-Request oder Einschalten der Steuerung am Kommunikationssystem erkannt worden sind.

Unterfunktion	Datenbereich		
	Request	Response	
00 _h 0B _h	00 _h 00 _h	Total Message Count	

FC 8.12 (08_h.0C_h) Return Bus Communication Error Count

Der Datenbereich der Antwort gibt die Anzahl der CRC Fehler seit dem letzten Neustart, "Clear Counters and Diagnostic Register"-Request oder Einschalten der Steuerung zurück.

Unterfunktion	Datenbereich		
	Request	Response	
00 _h 0C _h	00 _h 00 _h	CRC Error Count	

Beispiel

Request

SA	FC	Daten				CRC	
05	08	00	0C	00	00	21	8C

Response

SA	FC	Daten				CF	RC
05	08	00	0C	00	00	21	8C

FC 8.13 (08_h.0D_h) Return Bus Exception Error Count

Der Datenbereich der Antwort gibt die Anzahl der Modbus Ausnahmen seit dem letzten Neustart, "Clear Counters and Diagnostic Register"-Request oder Einschalten der Steuerung zurück.

Unterfunktion	Datenbereich	
	Request	Response
00 _h 0D _h	00 _h 00 _h	Exception Error Count

Request

SA	FC		Daten				CRC	
05	08	00	0 D	00	00	70	4C	

Response

SA	FC		Daten				CRC	
05	08	00	0 D	00	00	70	4C	

FC 8.14 (08_h.0E_h) Return Server Message Count

Der Datenbereich der Antwort gibt die Anzahl der an das Gerät gerichteten und Broadcast-Nachrichten zurück, die von der Steuerung verarbeitet wurden. Gezählt werden die Nachrichten seit dem letzten Neustart, "Clear Counters and Diagnostic Register"-Request oder Einschalten der Steuerung.

Unterfunktion	Datenbereich		
	Request	Response	
00 _h 0E _h	00 _h 00 _h	Server Message Count	

Beispiel

Request

SA	FC		Da	aten		CF	₹C
05	08	00	0E	00	00	80	4C

Response

SA	FC		Daten				CRC	
05	08	00	ΟE	00	00	80	4C	

FC 8.15 (08_h.0F_h) Return Server No Response Count

Der Datenbereich der Antwort gibt die Anzahl der an die Steuerung gerichteten Nachrichten zurück, für die keine Antwort zurückgesendet wurde (weder normale Antwort noch Ausnahme-Antwort). Gezählt werden die Nachrichten seit dem letzten Neustart, "Clear Counters and Diagnostic Register"-Request oder Einschalten der Steuerung.

Unterfunktion	Datenbereich		
	Request	Response	
00 _h 0F _h	00 _h 00 _h	No Response Count	

Request

SA	FC		Daten				CRC	
05	08	00	ΟF	00	00	D1	8C	

Response

SA	FC		Daten				CRC	
05	08	00	OF	00	00	D1	8C	

FC 8.16 (08_h.10_h) Return Server NAK Count

Der Datenbereich der Antwort gibt die Anzahl der Nachrichten zurück, für die eine "Negative Acknowledge (NAK)"-Ausnahme-Antwort zurückgesendet wurde. Gezählt werden die Nachrichten seit dem letzten Neustart, "Clear Counters and Diagnostic Register"-Request oder Einschalten der Steuerung.

Unterfunktion	Datenbereich		
	Request Response		
00 _h 10 _h	00 _h 00 _h	Server NAK Count	

Beispiel

Request

SA	FC		Daten				CRC	
05	08	00	10	00	00	ΕO	4A	

Response

SA	FC	Daten				CRC	
05	08	00	10	00	00	ΕO	4A

FC 8.17 (08_h.11_h) Return Server Busy Count

Der Datenbereich der Antwort gibt die Anzahl der Nachrichten zurück, für die eine "Server Device Busy "-Ausnahme-Antwort zurückgesendet wurde. Gezählt werden die Nachrichten seit dem letzten Neustart, "Clear Counters and Diagnostic Register"-Request oder Einschalten der Steuerung.

Unterfunktion	Datenbereich		
	Request	Response	
00 _h 11 _h	00 _h 00 _h	Server NAK Count	

Request

SA	FC		Da	aten		CF	RC
05	08	00	11	00	00	В1	8A

Response

SA	FC		Da	CRC			
05	08	00	11	00	00	В1	8A

FC 8.18 (08_h.12_h) Return Bus Character Overrun Count

Der Datenbereich der Antwort gibt die Anzahl der an die Steuerung gerichteten Nachrichten zurück, die Aufgrund einem Zeichenüberlauf nicht verarbeitet werden konnten. Gezählt werden die Nachrichten seit dem letzten Neustart, "Clear Counters and Diagnostic Register"-Request oder Einschalten der Steuerung. Ein Zeichenüberlauf entsteht dadurch, dass Zeichen schneller an der Steuerung ankommen, als sie gespeichert werden können, oder durch den Verlust eines Zeichens aufgrund eines Hardwarefehlers.

Unterfunktion	Datenbereich			
	Request	Response		
00 _h 12 _h	00 _h 00 _h	Server Character Overrun Count		

Beispiel

Request

SA	FC		Da	aten		CF	₹C
05	08	00	12	00	00	41	8A

Response

SA	FC		Da	CRC			
05	08	00	12	00	00	41	8A

8.6.7 FC 43 (2B_h) Encapsulated Interface Transport

Diese Funktion ermöglicht einen einfachen Zugriff auf das CANopen-Objektverzeichnis. Weitere Details können in den folgenden Dokumentationen entnommen werden:

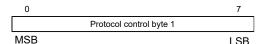
1. MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b3, Date: 26.04.2014, Version: 1.1b3

2. CiA 309 Draft Standard Proposal - Access from other networks - Part 2: Modbus/TCP mapping V1.3, Date: 30.07.2015, Version: 1.3

Hinweis

Für die Nachrichten des Encapsulated Interface-Transport gilt zum Teil eine andere Byte-Reihenfolge, siehe Kapitel **Allgemeines**.

Definition des Request und Response:


Name	Länge	Beispiel/Zahlenbereich
Slave-Adresse	1 Byte	
Funktionscode	1 Byte	2B _h (43 _d)
MEI type	1 Byte	0D _h (13 _d)
Protokolloptionen Bereich	2 bis 5 Byte	
Adressen- und Datenbereich	N Bytes	
CRC	2 Bytes	


Protokolloptionen Bereich

Name	Länge	Beispiel/Zahlenbereich
Protokoll-Kontrolle	1 bis 2 Bytes	Siehe Beschreibung
Reserviert	1 Byte	Immer 0
(Optional) Zählerbyte	1 Byte	
(Optional) Netzwerk ID	1 Byte	
(Optional) Encodierte Daten	1 Byte	

Protokoll-Kontrolle:

Das Feld "Protokoll-Kontrolle" enthält die Merker, welche für die Kontrolle der Nachrichtenprotokolle benötigt werden. Die Bytes des Feldes "Protokoll Kontrolle" sind folgendermaßen definiert, falls der Merker "Verlängerung" gesetzt wurde (andernfalls entfällt das zweite Byte):

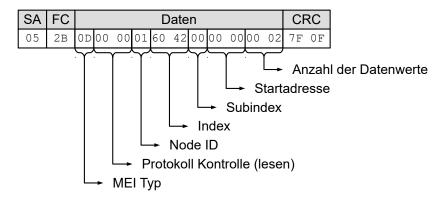
Das höchstwertige Bit (MSB) ist Bit 0 für "Protokoll Kontrolle" Byte 1, und Bit 8 für "Protokoll Kontrolle" Byte 2. Das niedrigstwertige Bit (LSB) ist Bit 7 für "Protokoll Kontrolle" Byte 1, und Bit 15 für "Protokoll Kontrolle" Byte 2.

Bit	Name	Beschreibung
0	Merker "Verlängerung"	Dieses Bit wird genutzt, wenn das Objektverzeichnis Datenset größer ist, als in ein Modbus-Kommando passen würde. Das Datenset wird dann über mehrere Modbus-Nachrichten gestreckt, jede Nachricht enthält einen Teil des Datensets. "0" = Keine mehrfache Nachrichtentransaktion ("multiple message transaction") oder das Ende der mehrfachen

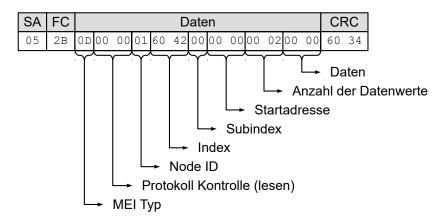
Bit	Name	Beschreibung
		Nachrichtentransaktion. "1" = Teil einer mehrfachen Nachrichtentransaktion.
1	Erweiterte Protokoll Kontrolle	Länge der Protokoll-Kontrolle, der Wert "0" zeigt eine Länge von 1 Byte an, der Wert "1" eine Länge von 2 Byte.
2	Zähler Byte Option	Dieses Bit ist auf "1" um anzuzeigen, dass das Feld "counter byte" in dieser Nachricht genutzt wird. Ist dieses Bit auf "0" gesetzt, existiert das Feld "counter byte" nicht in dieser Nachricht.
3 und 4	Reserviert	0
5	Network ID Option	Nicht unterstützt, muss "0" sein.
6	Encodierte Datenoption	Nicht unterstützt, muss "0" sein.
7	Zugriffsmerker	Dieses Bit zeigt die Zugriffsmethode des angeforderten Kommandos an. "0" = lesen, "1" = schreiben.
8 to 15	Reserviert	0

Adressen- und Datenbereich

Der Adressen- und Datenbereich ist in der folgenden Tabelle definiert:


Name	Bytegröße und Bytereihenfolge	Beispiel / Bereich
Node ID	1 Byte	01 _h bis 7F _h
Index	1 Byte, high	0000 _h bis FFFF _h
	1 Byte, low	
Subindex	1 Byte	00 _h bis FF _h
Startadresse	1 Byte, high	0000 _h bis FFFF _h
	1 Byte, low	
Anzahl der Datenwerte	1 Byte, high	0000 _h bis 00FD _h
	1 Byte, low	
Schreib-/Lesedaten	n Byte	Die Daten sind codiert wie in Kapitel Allgemeines beschrieben.

Beispiel:


Um das Objekt 6042_h : 00_h auszulesen (16 Bit-Wert), muss folgende Nachricht vom Master verschickt werden (alle Werte sind in hexadezimaler Notation, die Slave-Id der Steuerung ist "5").

Request

Response

Als zusätzliches Beispiel nachfolgend eine Sequenz an Modbus-Nachrichten vom Master zum Slave, um den Motor im "Velocity" Modus sich drehen zu lassen:

Setze 6060 = "02_h" (velocity mode) Request

SA	FC		Daten								CF	CRC			
05	2B	0 D	01	00	01	60	60	00	00	00	00	01	02	С9	2F

Response

SA	FC		Daten						CF	RC				
05	2В	0 D	01	00	01	60	60	00	00	00	00	00	Α9	89

Setze 2031 = 203E8_h" (1000 mA) Request

SA	FC							[Date	n							CF	₹C
05	2В	0 D	01	00	01	20	31	00	00	00	00	04	E8	03	00	00	С3	53

Response

SA	FC					[Date	en					CF	RC
05	2В	0 D	01	00	01	20	31	00	00	00	00	00	E5	CC

Setze 6040 = "00_h"

Request

SA	FC						I	Date	en						CF	SC.
05	2В	0 D	01	00	01	60	40	00	00	00	00	02	00	00	1C	2E

Response

SA	FC					[Date	en					CF	RC
05	2В	0 D	01	00	01	60	40	00	00	00	00	00	AE	E9

Setze 6040 = "80_h"

Request

SA	FC						I	Date	en						CF	RC
05	2В	0 D	01	00	01	60	40	00	00	00	00	02	80	00	7D	EE

Response

SA	FC					[Date	en					CF	RC
05	2В	0 D	01	00	01	60	40	00	00	00	00	00	AE	E9

Setze 6040 = "06_h"

Request

SA	FC						[Date	en						CF	₹С
05	2В	0 D	01	00	01	60	40	00	00	00	00	02	06	00	1F	8E

Response

SA	FC					[Date	en					CF	RC
05	2В	0 D	01	00	01	60	40	00	00	00	00	00	ΑE	E9

Setze 6040 = "07_h"

Request

SA	FC						[Date	en						CF	₹С
05	2В	0 D	01	00	01	60	40	00	00	00	00	02	07	00	1E	1E

Response

SA	FC					[Date	en					CF	RC
05	2В	0 D	01	00	01	60	40	00	00	00	00	00	ΑE	E9

Setze 6040 = "0F_h" Request

SA	FC						I	Date	en						CF	RC
05	2В	0 D	01	00	01	60	40	00	00	00	00	02	0F	00	19	DE

Response

SA	FC					[Date	en					CF	RC
05	2В	0 D	01	00	01	60	40	00	00	00	00	00	AE	E9

Nachfolgend zwei Beispiele zum Lesen eines Objektes:

Lese 6041_h:00_h Request

SA	FC		Daten								CF	RC		
05	2В	0 D	00	00	01	60	41	00	00	00	00	02	7F	3C

Response

SA	FC		Daten						CF	RC						
05	2B	0 D	00	00	01	60	41	00	00	00	00	02	37	06	В6	13

Lese 6061_h:00_h Request

SA	FC		Daten							CF	RC			
05	2B	0 D	00	00	01	60	61	00	00	00	00	01	38	5D

Response

SI	FC		Daten							CF	₹C				
05	2В	0 D	00	00	01	60	61	00	00	00	00	01	00	5C	D2

Fehlerreaktion

Im Falle eines Fehlers wird die folgende Fehlernachricht gesendet:

Name	Länge	Beispielwert
Slave-Adresse	1 Byte	

Name	Länge	Beispielwert
Funktionscode	1 Byte	$2B_h +80_h (171_d = 43_d + 128_d)$ (zeigt Fehler an)
Modbus exception code	1 Byte	FF _h ("extended exception")
Extended exception Länge	2 Bytes	6
MEI type	1 Byte	0D _h
Exception code	1 Byte	CE _h
Fehlercode	4 Bytes	CANopen Fehlercode
CRC	2 Bytes	

Im Falle, dass das nicht unterstützte Kontrolloptions-Bit gesetzt ist, wird folgende Fehlernachricht gesendet:

Name	Länge	Beispielwert
Slave-Adresse	1 Byte	
Funktionscode	1 Byte	$2B_h + 80_h (171_d = 43_d + 128_d)$ (zeigt Fehler an)
Modbus exception code	1 Byte	FF _h ("extended exception")
Extended exception length	2 Bytes	2 + Länge von "Supported protocol control"
MEI type	1 Byte	0D _h
Exception code	1 Byte	AE_h
Supported protocol control	1 oder 2 Bytes	Siehe nachfolgende Tabelle
CRC	2 Bytes	

Bit	Name	Beschreibung
0	Merker "Verlängerung"	Dieses Bit wird genutzt, wenn das Objektverzeichnis Datenset größer ist, als in ein Modbus-Kommando passen würde. Das Datenset wird dann über mehrere Modbus-Nachrichten gestreckt, jede Nachricht enthält einen Teil des Datensets. "0" = Keine mehrfache Nachrichtentransaktion ("multiple message transaction") oder das Ende der mehrfachen Nachrichtentransaktion. "1" = Teil einer mehrfachen Nachrichtentransaktion.
1	Erweiterte Protokoll Kontrolle	Länge der Protokoll-Kontrolle, der Wert "0" zeigt eine Länge von 1 Byte an, der Wert "1" eine Länge von 2 Byte.
2	Zähler Byte Option	Dieses Bit ist auf "1" um anzuzeigen, dass das Feld "counter byte" in dieser Nachricht genutzt wird. Ist dieses Bit auf "0" gesetzt, existiert das Feld "counter byte" nicht in dieser Nachricht.
3 und 4	Reserviert	0
5	Network ID Option	Nicht unterstützt, muss "0" sein.
6	Encodierte Datenoption	Nicht unterstützt, muss "0" sein.
7	Zugriffsmerker	Dieses Bit zeigt die Zugriffsmethode des angeforderten Kommandos an. "0" = lesen, "1" = schreiben.
8 to 15	Reserviert	0

Das nachfolgende Beispiel zeigt einen Fehler im Falle eines fehlerhaften Request. Der Request liest das **6061**_h:00 mit der Länge von 2 Byte, das Objekt ist aber nur 1 Byte groß:

Request

SA	FC		Daten								CF	RC		
05	2В	0 D	00	00	01	60	60	00	00	00	00	02	79	8D

Response

SA	FC				[Date	en				CF	RC
05	2В	FF	00	06	0 D	CE	12	00	07	06	AC	3C

8.6.8 FC 101 (65_h) Read complete object dictionary

Dieser Funktionscode wird zum Auslesen des gesamten Objektverzeichnisses verwendet.

Um das Auslesen des Objektverzeichnisses zu starten oder neu zu starten, muss der Unterfunktionscode 55_h versendet werden. Dieser Code setzt das Auslesen des Objektverzeichnisses auf das Objekt 0000_h zurück. Alle nachfolgenden Objektverzeichnis-Frames müssen dann den Unterfunktionscode AA_h enthalten. Zum Ende, wenn alle Objekte ausgelesen wurden, wird eine "Error Response" generiert mit dem Abort-Code "No data available".

Das Format jedes "Objekt lesen" ist folgendermaßen:

Request:

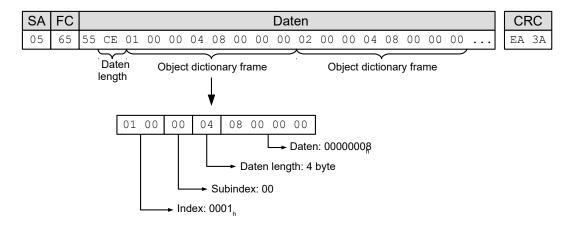
Name	Länge	Wert / Bemerkung	
Slave-Adresse	1 Byte		
Funktionscode	1 Byte	65 _h	
Unterfunktionscode	1 Byte	55 _h oder AA _h	
Länge der Daten	1 Byte	00 _h	
CRC	2 Bytes		

Response:

Name	Länge	Wert / Bemerkung
Slave-Adresse	1 Byte	65 _h
Funktionscode	1 Byte	
Unterfunktionscode	1 Byte	
Länge der Daten	1 Byte	
n mal "Objektverzeichnis-Frame"	1 - 252 Bytes	
CRC	2 Bytes	

Ein Objektverzeichnis-Frame besteht aus den folgenden Bytes:

Name	Wert / Bemerkung	
Index Low Byte	1 Byte	
Index High Byte	1 Byte	
Subindex	1 Byte	


Name		Wert / Bemerkung
Anzahl der Bytes	1 Byte	Anzahl m der validen Daten im Datenfeld
Daten Byte	m-1 Byte	

Alle folgenden Zahlenwerte sind in Hexadezimal notiert. Die Adresse des Slaves ist "5".

Start des Auslesens des Objektverzeichnisses mit dem Request:

SA	FC	Da	aten	CF	RC
05	65	55	00	2F	Α7

Die Response ist:

Den nächsten Teil des Objektverzeichnisses auslesen mit dem Request:

SA	FC	Da	iten	CF	RC
05	65	AA	00	6E	57

Die Response ist:

SA	FC		Daten										CF	≀C								
05	65	AA	CD	21	00	0A	02	07	00	21	00	0В	02	07	00	21	00	0C	02		NN	NN

Wiederholen des Auslesens des Objektverzeichnisses mit dem vorherigen Request, bis die Response ein Fehler ist:

SA	FC	Daten	CF	RC
05	E5	0 D	EΑ	94

Fehlerreaktion

Im Falle eines Fehlers wird die folgende Fehlernachricht gesendet:

Name	Länge	Beispielwert
Slave-Adresse	1 Byte	

Name	Länge	Beispielwert
Funktionscode	1 Byte	$2B_h +80_h (171_d = 43_d + 128_d)$ (zeigt Fehler an)
Modbus exception code	1 Byte	FF _h ("extended exception")
Extended exception Länge	2 Bytes	6
MEI type	1 Byte	0D _h
Exception code	1 Byte	CE _h
Fehlercode	4 Bytes	CANopen Fehlercode
CRC	2 Bytes	

Im Falle, dass das nicht unterstützte Kontrolloptions-Bit gesetzt ist, wird folgende Fehlernachricht gesendet:

Name	Länge	Beispielwert
Slave-Adresse	1 Byte	·
Funktionscode	1 Byte	$2B_h + 80_h$ (171 _d = $43_d + 128_d$) (zeigt Fehler an)
Modbus exception code	1 Byte	FF _h ("extended exception")
Extended exception length	2 Bytes	2 + Länge von "Supported protocol control"
MEI type	1 Byte	0D _h
Exception code	1 Byte	AE _h
Supported protocol control	1 oder 2 Bytes	Siehe nachfolgende Tabelle
CRC	2 Bytes	

Bit	Name	Beschreibung
0	Merker "Verlängerung"	Dieses Bit wird genutzt, wenn das Objektverzeichnis Datenset größer ist, als in ein Modbus-Kommando passen würde. Das Datenset wird dann über mehrere Modbus-Nachrichten gestreckt, jede Nachricht enthält einen Teil des Datensets. "0" = Keine mehrfache Nachrichtentransaktion ("multiple message transaction") oder das Ende der mehrfachen Nachrichtentransaktion. "1" = Teil einer mehrfachen Nachrichtentransaktion.
1	Erweiterte Protokoll Kontrolle	Länge der Protokoll-Kontrolle, der Wert "0" zeigt eine Länge von 1 Byte an, der Wert "1" eine Länge von 2 Byte.
2	Zähler Byte Option	Dieses Bit ist auf "1" um anzuzeigen, dass das Feld "counter byte" in dieser Nachricht genutzt wird. Ist dieses Bit auf "0" gesetzt, existiert das Feld "counter byte" nicht in dieser Nachricht.
3 und 4	Reserviert	0
5	Network ID Option	Nicht unterstützt, muss "0" sein.
6	Encodierte Datenoption	Nicht unterstützt, muss "0" sein.
7	Zugriffsmerker	Dieses Bit zeigt die Zugriffsmethode des angeforderten Kommandos an. "0" = lesen, "1" = schreiben.
8 to 15	Reserviert	0

Das nachfolgende Beispiel zeigt einen Fehler im Falle eines fehlerhaften Request. Der Request liest das **6061**_h:00 mit der Länge von 2 Byte, das Objekt ist aber nur 1 Byte groß:

Request

SA	FC		Daten								CF	CRC		
05	2B	0 D	00	00	01	60	60	00	00	00	00	02	79	8D

Response

SA	FC		Daten								CF	RC
05	2В	FF	00	06	0 D	CE	12	00	07	06	AC	3C

8.6.9 FC 102 (66_h) Read complete array or record

Dieser Funktionscode wird zum Auslesen eines gesamten Arrays oder Records vom Objektverzeichnis verwendet.

Um das Auslesen des Arrays zu starten oder neu zu starten, muss der Unterfunktionscode 55_h versendet werden. Dieser Code setzt das Auslesen auf das Objekt mit Subindex 00_h zurück. Alle nachfolgenden Requests müssen dann den Unterfunktionscode AA_h enthalten. Zum Ende, wenn alle Objekte ausgelesen wurden, wird eine "Error Response" generiert.

Das Format jedes "Objekt lesen" ist folgendermaßen:

Request:

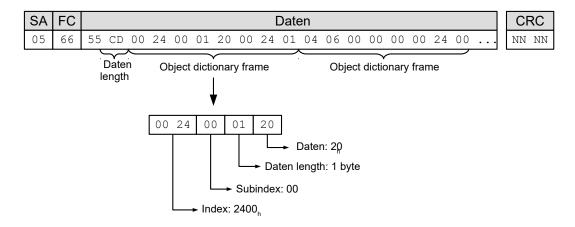
Name	Länge	Wert / Bemerkung
Slave-Adresse	1 Byte	
Funktionscode	1 Byte	66 _h
Unterfunktionscode	1 Byte	55 _h oder AA _h
Länge der Daten	1 Byte	00 _h
Index des zu lesenden Arrays	2 Bytes	
CRC	2 Bytes	

Response:

Name	Länge	Wert / Bemerkung
Slave-Adresse	1 Byte	65 _h
Funktionscode	1 Byte	
Unterfunktionscode	1 Byte	
Länge der Daten	1 Byte	
n mal Objektverzeichnis-Frame	1 - 252 Bytes	
CRC	2 Bytes	

Ein Objektverzeichnis-Frame besteht aus den folgenden Bytes:

Name	Wert / Bemerkung
Index Low Byte	1 Byte
Index High Byte	1 Byte


Name		Wert / Bemerkung
Subindex	1 Byte	
Anzahl der Bytes	1 Byte	Anzahl m der validen Daten im Datenfeld
Daten Byte	m-1 Byte	

Alle folgenden Zahlenwerte sind in Hexadezimal notiert, der Index des zu lesenden Objektes ist 2400_h . Die Adresse des Slaves ist 5_h .

Start des Auslesens des Arrays mit dem Request:

SA	FC	Daten				CRC		
05	66	55	00	24	00	02	8A	

Die Response ist:

Fehlerreaktion

Im Falle eines Fehlers wird die folgende Fehlernachricht gesendet:

Name	Länge	Beispielwert
Slave-Adresse	1 Byte	
Funktionscode	1 Byte	$2B_h + 80_h (171_d = 43_d + 128_d)$ (zeigt Fehler an)
Modbus exception code	1 Byte	FF _h ("extended exception")
Extended exception Länge	2 Bytes	6
MEI type	1 Byte	$0D_h$
Exception code	1 Byte	CE _h
Fehlercode	4 Bytes	CANopen Fehlercode
CRC	2 Bytes	

Im Falle, dass das nicht unterstützte Kontrolloptions-Bit gesetzt ist, wird folgende Fehlernachricht gesendet:

Name	Länge	Beispielwert
Slave-Adresse	1 Byte	
Funktionscode	1 Byte	$2B_h + 80_h$ (171 _d = $43_d + 128_d$) (zeigt Fehler an)
Modbus exception code	1 Byte	FF _h ("extended exception")
Extended exception length	2 Bytes	2 + Länge von "Supported protocol control"
MEI type	1 Byte	0D _h
Exception code	1 Byte	AE_h
Supported protocol control	1 oder 2 Bytes	Siehe nachfolgende Tabelle
CRC	2 Bytes	

Bit	Name	Beschreibung
0	Merker "Verlängerung"	Dieses Bit wird genutzt, wenn das Objektverzeichnis Datenset größer ist, als in ein Modbus-Kommando passen würde. Das Datenset wird dann über mehrere Modbus-Nachrichten gestreckt, jede Nachricht enthält einen Teil des Datensets. "0" = Keine mehrfache Nachrichtentransaktion ("multiple message transaction") oder das Ende der mehrfachen Nachrichtentransaktion. "1" = Teil einer mehrfachen Nachrichtentransaktion.
1	Erweiterte Protokoll Kontrolle	Länge der Protokoll-Kontrolle, der Wert "0" zeigt eine Länge von 1 Byte an, der Wert "1" eine Länge von 2 Byte.
2	Zähler Byte Option	Dieses Bit ist auf "1" um anzuzeigen, dass das Feld "counter byte" in dieser Nachricht genutzt wird. Ist dieses Bit auf "0" gesetzt, existiert das Feld "counter byte" nicht in dieser Nachricht.
3 und 4	Reserviert	0
5	Network ID Option	Nicht unterstützt, muss "0" sein.
6	Encodierte Datenoption	Nicht unterstützt, muss "0" sein.
7	Zugriffsmerker	Dieses Bit zeigt die Zugriffsmethode des angeforderten Kommandos an. "0" = lesen, "1" = schreiben.
8 to 15	Reserviert	0

Das nachfolgende Beispiel zeigt einen Fehler im Falle eines fehlerhaften Request. Der Request liest das 6061_h :00 mit der Länge von 2 Byte, das Objekt ist aber nur 1 Byte groß:

Request

SA	FC		Daten										CRC	
05	2В	0 D	00	00	01	60	60	00	00	00	00	02	79	8D

Response

SA	FC		Daten								CF	₹С
05	2В	FF	00	06	0 D	CE	12	00	07	06	AC	3C

8.7 Prozessdatenobjekte (PDO)

Wie bei CANopen kann bei Modbus ein Prozessimage für Eingangs- und Ausgangsgrößen konfiguriert werden. Dieses Image beinhaltet nur noch Datenwerte einer oder mehrerer Objekte ohne Zusatzinformation wie Länge, Index oder Subindex. Damit lassen sich mittels einer Nachricht gleich mehrere Objekte lesen oder schreiben.

8.7.1 Konfiguration

Die Konfiguration des Image wird als "Mapping" bezeichnet und in folgenden Objekten geschrieben:

- 3502_h für das Modbus Rx (Master → Slave) PDO-Mapping
- 3602_h für das Modbus Tx (Slave → Master) PDO-Mapping

Beide Objekte beinhalten einen Array mit jeweils 16 Einträge. Der Subindex 00 gibt dabei die Anzahl der gültigen Einträge an.

Die Objekte 3502_h und 3602_h lassen sich mit Nachrichten mit dem Modbus-Funktionscode 2B_h beschreiben.

8.7.2 Übertragung

Die Daten werden aufeinander folgend ohne Lücke und Ausrichtung in die Nachricht geschrieben.

Wird ein Alignment (z.B. 16-Bit-Alignment) benötigt, kann man zusätzliche "Dummy-Objekte" mit in die Nachricht einbauen. Dummy-Objekte werden immer mit den Datenwert "0" übertragen. Diese Objekte sind in der nachfolgenden Tabelle abgedruckt.

Index	Datentyp
0002 _h	Vorzeichenbehaftete Ganzzahl (8 Bit)
0003 _h	Vorzeichenbehaftete Ganzzahl (16 Bit)
0004 _h	Vorzeichenbehaftete Ganzzahl (32 Bit)
0005 _h	Vorzeichenlose Ganzzahl (8 Bit)
0006 _h	Vorzeichenlose Ganzzahl (16 Bit)
0007 _h	Vorzeichenlose Ganzzahl (32 Bit)

Das Mapping ist wie folgt:

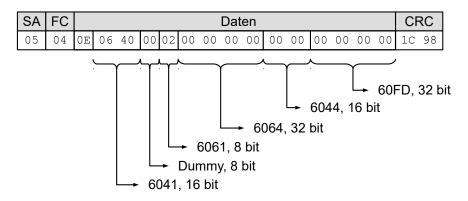
- Das PDO RX Image fängt an der Modbus-Register-Adresse 6000_d (1770_h) an.
- Das PDO TX Image fängt an der Modbus-Register-Adresse 5000_d (1388_h) an.

Der Zugriff kann mit Funktionscode 17_h lesend/schreibend gleichzeitig erfolgen oder mit den Kommandos 03_h , 04_h , 06_h , 10_h auf die jeweiligen RX/TX Images.

Beispiel

In dem Mapping sollen folgende Objekte eingestellt werden:

- $3602_h:00_h = "6_h"$ (6 Werte werden gemappt)
- **3602**_h:01_h = "60410010_h" (das Objekt **6041**_h:00_h, Länge 16 Bit wird gemappt)
- **3602**_h:02_h = "00050008_h" (das Dummy-Objekt 0005_h:00_h, Länge 8 Bit wird gemappt)
- 3602_h:03_h = "60610008_h" (das Objekt 6061_h:00_h, Länge 8 Bit wird gemappt)
- 3602_h:04_h = "60640020_h" (das Objekt 6064_h:00_h, Länge 32 Bit wird gemappt)
- 3602_h:05_h = "60440010_h" (das Objekt 6044_h:00_h, Länge 16 Bit wird gemappt)
- 3602_h:06_h = "60FD0020_h" (das Objekt 60FD_h:00_h, Länge 32 Bit wird gemappt)


Nach dem Mapping für das Objekt $6061_h:00_h$ wird ein Dummy-Objekt eingefügt, damit das nachfolgende Objekt $6064_h:00_h$ auf 32 Bit ausgerichtet wird.

RX Nachricht: Der Master schickt an den Slave folgende Nachricht:

SA	FC	Daten				CRC		
05	04	13	88	00	07	34	E2	

TX Nachricht: Der Slave schickt an den Master folgende Antwort:

8.8 NanoJ-Objekte

Die NanoJ-Objekte $\bf 2400_h$ NanoJ Input und $\bf 2500_h$ (NanoJ Output) werden wie das Prozessimage auf Modbus-Register gemappt:

- **2500**_h mit 32 x 32 Bit Werten wird auf die Modbus Register Adresse ab 2000_d (BB8_h) gemappt und kann auf diese Weise nur gelesen werden.
- 2400_h mit 32 x 32 Bit Werten wird auf die Modbus Register Adresse ab 3000_d (7D0_h) gemappt und kann auf diese Weise nur beschrieben werden.

Für den Zugriff können die Kommandos mit Funktionscode 03_h , 04_h , 10_h und 17_h verwendet werden. Es gilt die Einschränkung, dass die Adresse auf 32 Bit ausgerichtet (aligned) sein muss und auch bei einem Schreibvorgang immer mindestens 32 Bit geschrieben werden muss, damit die Daten konsistent sind.

Beispiel

Request: Der Master schickt an den Slave folgende Nachricht:

SA	FC										I	Date	en										CF	₹C
05	17				08	0B	В8	00	08	10	00	01	02	03	04	05	06	07	08	09	0A	0B	41	21
		0C	0 D	ΟE	U.F.																			

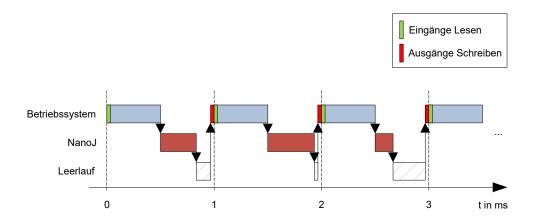
Reply: Der Slave schickt an den Master folgende Antwort:

SA	FC	Daten								CRC										
05	17	10	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	50	9 D

9 Programmierung mit NanoJ

NanoJ ist eine C- bzw. C++-nahe Programmiersprache. NanoJ ist in der Software Plug & Drive Studio integriert. Weiterführende Informationen finden Sie im Dokument Plug & Drive Studio: Quick Start Guide auf www.nanotec.de.

9.1 NanoJ-Programm


Ein *NanoJ-Programm* stellt eine geschützte Ausführungsumgebung innerhalb der Firmware zur Verfügung. In dieser kann der Anwender eigene Abläufe anlegen. Diese können dann Funktionen in der Steuerung auslösen, indem beispielsweise Einträge im Objektverzeichnis gelesen oder geschrieben werden.

Durch Verwendung von Schutzmechanismen wird verhindert, dass ein *NanoJ-Programm* die Firmware zum Absturz bringt. Im schlimmsten Fall wird die Ausführung mit einem im Objektverzeichnis hinterlegten Fehlercode abgebrochen.

Wenn das *NanoJ-Programm* auf die Steuerung geladen wurde, wird es nach dem Einschalten oder Neustarten der Steuerung automatisch ausgeführt.

9.1.1 Verfügbare Rechenzeit

Ein NanoJ-Programm erhält zyklisch im 1 ms-Takt Rechenzeit (siehe folgende Abbildung). Da durch Interrupts und Systemfunktionen der Firmware Rechenzeit verloren geht, stehen dem Benutzerprogramm (abhängig von Betriebsart und Anwendungsfall) nur ca. 30% ... 50% Rechenzeit zur Verfügung. In dieser Zeit muss das Benutzerprogramm den Zyklus durchlaufen und entweder beenden oder durch Aufruf der Funktion yield() die Rechenzeit abgeben. Bei Ersterem wird das Benutzerprogramm mit dem Beginn des nächsten 1 ms-Zyklus wieder neu gestartet, letzteres bewirkt eine Fortsetzung des Programms an dem der Funktion yield() nachfolgenden Befehl beim nächsten 1 ms-Zyklus.

Falls das *NanoJ-Programm* mehr als die ihm zugeteilte Zeit benötigt, wird es beendet und im Objektverzeichnis ein Fehlercode gesetzt.

Tipp

Bei der Entwicklung von Benutzerprogrammen ist speziell bei zeitintensiveren Aufgaben eine sorgfältige Überprüfung des Laufzeitverhaltens durchzuführen. So empfiehlt sich beispielsweise die Verwendung von Tabellen, anstatt einen Sinuswert über eine sin Funktion zu berechnen.

Hinweis

Sollte das *NanoJ-Programm* zu lange die Rechenzeit nicht abgeben, wird es vom Betriebssystem beendet. In diesem Fall wird in das Statusword bei Objekt 2301_h die Ziffer 4 eingetragen, im Fehlerregister bei Objekt 2302_h wird die Ziffer 5 (Timeout) notiert, siehe **2301h NanoJ Status** und **2302h NanoJ Error Code**.

9.1.2 Sandbox

Durch prozessorspezifische Eigenschaften wird eine sogenannte *Sandbox* generiert. Ein Benutzerprogramm in der Sandbox hat nur die Möglichkeit, auf speziell zugewiesene Speicherbereiche und Systemressourcen zuzugreifen. Beispielsweise wird ein Versuch, auf ein Prozessor-IO-Register direkt zu schreiben, mit einem *MPU Fault* quittiert und das Benutzerprogramm wird mit dem entsprechenden Fehlercode im Objektverzeichnis abgebrochen.

9.1.3 NanoJ-Programm - Kommunikationsmöglichkeiten

Ein NanoJ-Programm hat mehrere Möglichkeiten, mit der Steuerung zu kommunizieren:

- · Lesen und Schreiben von OD-Werten per PDO-Mapping
- direktes Lesen und Schreiben von OD-Werten über Systemcalls
- Aufruf sonstiger Systemcalls (z. B. Debug-Ausgabe schreiben)

Über ein *PDO-Mapping* werden dem Benutzerprogramm OD-Werte in Form von Variablen zur Verfügung gestellt. Bevor ein Benutzerprogramm die 1 ms-Zeitscheibe erhält, werden dazu von der Firmware die Werte aus dem Objektverzeichnis in die Variablen des Benutzerprogramms übertragen. Sobald das Benutzerprogramm Rechenzeit erhält, kann es diese Variablen wie gewöhnliche C-Variablen manipulieren. Am Ende der Zeitscheibe werden letztendlich die neuen Werte von der Firmware wieder automatisch in die jeweiligen OD-Einträge kopiert.

Um die Performance zu optimieren, werden dabei drei Arten von Mappings definiert: Input, Output und Input/Output (In, Out, InOut).

- Input Mappings lassen sich nur lesen und werden nicht zurück ins Objektverzeichnis übertragen.
- Output Mappings lassen sich nur schreiben.
- Input/Output Mappings erlauben hingegen Lesen und Schreiben.

Die gesetzten Mappings können über die GUI bei den Objekten 2310_h, 2320_h, und 2330_h ausgelesen und überprüft werden. Für jedes Mapping sind maximal 16 Einträge erlaubt.

Über die Angabe der *Linker-Section* wird in *NanoJEasy* gesteuert, ob eine Variable im Input-, Outputoder Datenbereich abgelegt wird.

9.1.4 NanoJ-Programm ausführen

Zusammengefasst besteht das *NanoJ-Programm* bei der Ausführung eines Zyklus hinsichtlich des PDO-Mappings aus folgenden drei Schritten:

- 1. Werte aus dem Objektverzeichnis lesen und in die Bereiche Inputs und Outputs kopieren
- 2. Benutzerprogramm ausführen
- 3. Werte aus den Bereichen Outputs und Inputs zurück in das Objektverzeichnis kopieren

Die Konfiguration der Kopiervorgänge ist dem CANopen-Standard angelehnt.

Zusätzlich kann über Systemcalls auf Werte des Objektverzeichnisses zugegriffen werden. Dies ist im Allgemeinen deutlich langsamer und daher sind Mappings vorzuziehen. Die Anzahl an Mappings ist begrenzt (jeweils 16 Einträge in In/Out/InOut).

Tipp

Nanotec empfiehlt: Häufig genutzte und veränderte OD-Einträge mappen und auf weniger häufig genutzte OD-Einträge per Systemcall zuzugreifen.

Eine Liste verfügbarer Systemcalls findet sich im Kapitel Systemcalls im NanoJ-Programm.

Tipp

Nanotec empfiehlt, entweder per Mapping oder Systemcall mit od_write() auf ein und denselben OD-Wert zuzugreifen. Wird beides gleichzeitig verwendet, so hat der Systemcall keine Auswirkung.

9.1.5 NanoJ-Programm OD-Einträge

Das *NanoJ-Programm* wird durch OD-Einträge im Objekt-Bereich 2300_h bis 2330_h gesteuert und konfiguriert (siehe **2300h NanoJ Control**).

OD-Index	Name und Beschreibung
2300 _h	2300h NanoJ Control
2301 _h	2301h NanoJ Status
2302 _h	2302h NanoJ Error Code
2310 _h	2310h NanoJ Input Data Selection
2320 _h	2320h NanoJ Output Data Selection
2330 _h	2330h NanoJ In/output Data Selection

Beispiel:

Um das Benutzerprogramm TEST1.USR zu starten, kann z. B. folgende Sequenz benutzt werden:

- Überprüfen des Eintrags 2302_h auf Fehlercode.
- Wenn kein Fehler:
 NanoJ-Programm starten durch Beschreiben von Objekt 2300_h, Bit 0 = "1".

Hinweis

Das Starten des NanoJ Programms kann bis zu 200 ms dauern.

• Überprüfen des Eintrags 2302_h auf Fehlercode und des Objekts 2301_h, Bit 0 = "1".

Um ein laufendes Programm anzuhalten: Beschreiben des Eintrags 2300_h mit dem Bit 0 Wert = "0".

9.1.6 Aufbau NanoJ-Programm

Ein Benutzerprogramm besteht aus mindestens zwei Anweisungen:

- der Präprozessoranweisung #include "wrapper.h"
- der Funktion void user() {}

In der Funktion void user () lässt sich der auszuführende Code hinterlegen.

Hinweis

Die Dateinamen der Benutzerprogramme dürfen nicht länger als acht Zeichen sein und drei Zeichen im Suffix enthalten; Dateiname main.cpp ist zulässig, Dateiname einLangerDateiname.cpp ist nicht zulässig.

Hinweis

In *NanoJ-Programmen* dürfen globale Variablen ausschließlich innerhalb von Funktionen initialisiert werden. Daraus folgt:

- kein new Operator
- · keine Konstruktoren
- · keine Initialisierung von globalen Variablen außerhalb von Funktionen

Beispiele:

Die globale Variable soll erst innerhalb der Funktion void user () initialisiert werden:

```
unsigned int i;
void user() {
  i = 1;
  i += 1;
}
```

Folgende Zuweisung ist nicht korrekt :

```
unsigned int i = 1;
void user() {
  i += 1;
}
```

9.1.7 NanoJ-Programmbeispiel

Das Beispiel zeigt das Programmieren eines Rechtecksignals in das Objekt 2500h:01h.

```
// file main.cpp
map S32 outputReg1 as inout 0x2500:1
#include "wrapper.h"
// user program
void user()
  U16 counter = 0;
  while(1)
    ++counter;
   if(counter < 100)
    InOut.outputReg1 = 0;
    else if ( counter < 200 )
      InOut.outputReg1 = 1;
   else
      counter = 0;
   // yield() 5 times (delay 5ms)
   for(U08 i = 0; i < 5; ++i)
      yield();
}// eof
```


Weitere Beispiele finden Sie auf www.nanotec.de.

9.2 Mapping im NanoJ-Programm

Mit dieser Methode wird eine Variable im *NanoJ-Programm* direkt mit einem Eintrag im Objektverzeichnis verknüpft. Das Anlegen des Mappings muss dabei am Anfang der Datei stehen - noch vor der #include "wrapper.h"-Anweisung. Ein Kommentar oberhalb des Mappings ist erlaubt.

Tipp

Nanotec empfiehlt:

- Benutzen Sie das Mapping, falls Sie den Zugriff auf ein Objekt im Objektverzeichnis häufiger benötigen, z. B. das Controlword 6040_h oder das Statusword 6041_h.
- Für den einzelnen Zugriff auf Objekte bieten sich eher die Funktionen od_write() und od read() an, siehe Zugriff auf das Objektverzeichnis.

9.2.1 Deklaration des Mappings

Die Deklaration des Mappings gliedert sich dabei folgendermaßen:

```
map <TYPE> <NAME> as <input|output|inout> <INDEX>:<SUBINDEX>
```

Dabei gilt:

• <TYPE>

Der Datentyp der Variable; U32, U16, U08, S32, S16 oder S08.

<NAME>

Der Name der Variable; wie sie im Benutzerprogramm verwendet wird.

<input|output|inout>

Die Schreib- und Leseberechtigung einer Variable: Eine Variable kann entweder als input, output oder inout deklariert werden. Damit wird festgelegt, ob eine Variable lesbar (input), schreibbar (output) oder beides ist (inout) und über welche Struktur sie im Programm angesprochen werden muss.

<INDEX>:<SUBINDEX>

Index und Subindex des zu mappenden Objekts im Objektverzeichnis.

Jede deklarierte Variable wird im Benutzerprogramm über eine der drei Strukturen *In*, *Out* oder *InOut* angesprochen, je nach definierter Schreib- und Leserichtung.

9.2.2 Beispiel eines Mappings

Beispiel eines Mappings und der zugehörigen Variablenzugriffe:

```
map U16 controlWord as output 0x6040:00
map U08 statusWord as input 0x6041:00
map U08 modeOfOperation as inout 0x6060:00

#include "wrapper.h"

void user()
{
  [...]
  Out.controlWord = 1;
```



```
U08 tmpVar = In.statusword;
InOut.modeOfOperation = tmpVar;
[...]
}
```

9.2.3 Möglicher Fehler bei od write()

Eine mögliche Fehlerquelle ist ein schreibender Zugriff mittels der Funktion od_write() (siehe **Systemcalls im NanoJ-Programm**) auf ein Objekt im Objektverzeichnis, welches gleichzeitig als Mapping angelegt wurde. Nachfolgend aufgelisteter Code ist fehlerhaft:

```
map U16 controlWord as output 0x6040:00
#include " wrapper.h"
void user()
{
  [...]
  Out.controlWord = 1;
  [...]
  od_write(0x6040, 0x00, 5); // der Wert wird durch das Mapping überschrieben
  [...]
}
```

Die Zeile mit dem Befehl $od_write(0x6040, 0x00, 5)$; ist wirkungslos. Wie in der Einleitung beschrieben, werden alle Mappings am Ende jeder Millisekunde in das Objektverzeichnis kopiert.

Damit ergibt sich folgender Ablauf:

- 1. Die Funktion od write schreibt den Wert 5 in das Objekt 6040_h:00_h.
- 2. Am Ende des 1 ms-Zyklus wird das Mapping geschrieben, welches ebenfalls das Objekt 6040_h:00_h beschreibt, allerdings mit dem Wert 1.
- 3. Somit wird aus Sicht des Benutzers der od write-Befehl wirkungslos.

9.3 Systemcalls im NanoJ-Programm

Mit Systemcalls ist es möglich, in der Firmware eingebaute Funktionen direkt aus einem Benutzerprogramm aufzurufen. Eine direkte Code-Ausführung ist nur in dem geschützten Bereich der Sandbox möglich und wird über sogenannte *Cortex-Supervisor-Calls* (Svc Calls) realisiert. Dabei wird mit dem Aufruf der Funktion ein Interrupt ausgelöst und die Firmware hat so die Möglichkeit, temporär eine Code-Ausführung außerhalb der Sandbox zuzulassen. Der Entwickler des Benutzerprogramms muss sich jedoch um diesen Mechanismus nicht kümmern - für ihn sind die Systemcalls wie ganz normale C-Funktionen aufrufbar. Lediglich die Datei *wrapper.h* muss - wie üblich - eingebunden werden.

9.3.1 Zugriff auf das Objektverzeichnis

void od_write (U32 index, U32 subindex, U32 value)

Diese Funktion schreibt den übergebenen Wert an die angegebene Stelle in das Objektverzeichnis.

index	Index des zu schreibenden Objekts im Objektverzeichnis
subindex	Subindex des zu schreibenden Objekts im Objektverzeichnis
value	zu schreibender Wert

Hinweis

Es wird dringend empfohlen, nach dem Aufruf eines $od_write()$ die Prozessorzeit mit yield() abzugeben. Der Wert wird zwar sofort ins OD geschrieben. Damit die Firmware jedoch davon abhängige Aktionen auslösen kann, muss diese Rechenzeit erhalten und somit das Benutzerprogramm beendet oder mit yield() unterbrochen worden sein.

U32 od_read (U32 index, U32 subindex)

Diese Funktion liest den Wert an der angegebenen Stelle aus dem Objektverzeichnis und gibt ihn zurück.

index	Index des zu lesenden Objekts im Objektverzeichnis
subindex	Subindex des zu lesenden Objekts im Objektverzeichnis
Rückgabewert	Inhalt des OD-Eintrags

Hinweis

Aktives Warten auf einen Wert im Objektverzeichnis sollte immer mit einem yield() verbunden werden.

Beispiel

```
while (od_read(2400,2) != 0) // wait until 2400:2 is set
{ yield(); }
```

9.3.2 Prozesssteuerung

```
void yield()
```

Diese Funktion gibt die Prozessorzeit wieder an das Betriebssystem ab. Das Programm wird in der nächsten Zeitscheibe wieder an der Stelle nach dem Aufruf fortgesetzt.

```
void sleep (U32 ms)
```

Diese Funktion gibt die Prozessorzeit für die angegebene Zahl an Millisekunden an das Betriebssystem ab. Das Benutzerprogramm wird anschließend an der Stelle nach dem Aufruf fortgesetzt.

ms	Zu wartende Zeit in Millisekunden

10 Objektverzeichnis Beschreibung

10.1 Übersicht

In diesem Kapitel finden Sie eine Beschreibung aller Objekte.

Sie finden hier Angaben zu:

- Funktionen
- Objektbeschreibungen ("Index")
- · Wertebeschreibungen ("Subindices")
- Beschreibungen von Bits
- · Beschreibung des Objekts

10.2 Aufbau der Objektbeschreibung

Die Beschreibung der Objekteinträge ist immer gleich aufgebaut und besteht im Normalfall aus folgenden Abschnitten:

Funktion

In diesem Abschnitt wird kurz die Funktion des Objektverzeichnisses beschrieben.

Objektbeschreibung

Diese Tabelle gibt detailliert Auskunft über den Datentyp, Vorgabewerte und dergleichen. Eine genaue Beschreibung findet sich im Abschnitt "**Objektbeschreibung**"

Wertebeschreibung

Diese Tabelle ist nur bei dem Datentyp "Array" oder "Record" verfügbar und gibt genaue Auskunft über die Untereinträge. Eine genauere Beschreibung der Einträge findet sich im Abschnitt "**Wertebeschreibung**"

Beschreibung

Hier werden genauere Angaben zu den einzelnen Bits eines Eintrags gemacht oder eventuelle Zusammensetzungen erläutert. Eine genauere Beschreibung findet sich im Abschnitt "Beschreibung"

10.3 Objektbeschreibung

Die Objektbeschreibung besteht aus einer Tabelle, welche folgende Einträge enthält:

Index

Benennt den Index des Objekts in Hexadezimalschreibweise.

Objektname

Der Name des Objekts.

Object Code

Der Typ des Objekts. Das kann einer der folgenden Einträge sein:

- VARIABLE: In dem Fall besteht das Objekt nur aus einer Variable, die mit dem Subindex 0 indiziert wird.
- ARRAY: Diese Objekte bestehen immer aus einem Subindex 0 welcher die Menge der Untereinträge angibt - und den Untereinträgen selber ab dem Index 1. Der Datentyp innerhalb eines Arrays ändert sich nie, das heißt, Untereintrag 1 und alle folgenden Einträge haben immer den gleichen Datentyp.
- RECORD: Diese Objekte bestehen immer aus einem Untereintrag mit dem Subindex 0
 welcher die Menge der Untereinträge angibt und den Untereinträgen selber ab dem Index 1. Im Gegensatz zu einem ARRAY kann der Datentyp der Subeinträge variieren, das

bedeutet, dass beispielsweise Untereintrag 1 einen anderen Datentyp als Untereintrag 2 haben kann.

 VISIBLE_STRING: Das Objekt beschreibt eine in ASCII codierte Zeichenkette. Die Länge des Strings wird in Subindex 0 angegeben, die einzelnen Zeichen sind ab Subindex 1 gespeichert. Diese Zeichenketten sind nicht durch ein Null-Zeichen terminiert.

Datentyp

Hier wird die Größe und die Interpretation des Objekts angegeben. Für den Object Code "VARIABLE" gilt folgende Schreibweise:

- Es wird unterschieden zwischen Einträgen die vorzeichenbehaftet sind, das wird mit dem Präfix "SIGNED" bezeichnet. Für die vorzeichenunbehafteten Einträge wird das Präfix "UNSIGNED" benutzt.
- Die Größe der Variable in Bit wird an das Präfix angestellt und kann entweder 8, 16 oder 32 sein.

Speicherbar

Hier wird beschreiben ob dieses Objekt speicherbar ist und wenn ja, unter welcher Kategorie.

Firmware Version

Hier ist die Firmwareversion eingetragen, ab der das Objekt verfügbar ist.

Änderungshistorie (ChangeLog)

Hier werden eventuelle Änderungen an dem Objekt notiert.

Zudem gibt es noch die Einträge für den Datentyp "VARIABLE" folgende Tabelleneinträge:

Zugriff

Hier wird die Zugriffsbeschränkung eingetragen. Folgende Beschränkungen gibt es:

- "lesen/schreiben": Das Objekt kann sowohl gelesen, als auch geschrieben werden
- "nur lesen": Das Objekt kann nur aus dem Objektverzeichnis gelesen werden. Setzen eines Werte ist nicht möglich.

PDO-Mapping

Einige Bussysteme, wie CANopen oder EtherCAT unterstützen ein PDO-Mapping. In diesem Tabelleneintrag wird beschrieben, ob das Objekt in ein Mapping eingefügt werden darf und in welches. Dabei gibt es folgende Bezeichnungen:

- "no": Das Objekt darf in kein Mapping eingetragen werden.
- "TX-PDO": Das Objekt darf in ein RX Mapping eingetragen werden.
- "RX-PDO": Das Objekt dar in ein TX Mapping eingetragen werden.

Zulässige Werte

In einigen Fällen ist es nur erlaubt, bestimmte Werte in das Objekt zu schreiben. Sollte das der Fall sein, werden diese Werte hier aufgelistet. Besteht keine Beschränkung bleibt das Feld leer.

Vorgabewert

Um die Steuerung beim Einschalten in einen gesicherten Zustand zu bringen ist es nötig, einige Objekte mit Werten vorzubelegen. Der Wert, der beim Start der Steuerung in das Objekt geschrieben wird, wird in diesem Tabelleneintrag notiert.

10.4 Wertebeschreibung

Hinweis

Der Übersichtlichkeit halber werden einige Subindizes zusammengefasst, wenn die Einträge alle den gleichen Namen haben.

In der Tabelle mit der Überschrift "Wertebeschreibung" werden alle Daten für Untereinträge mit Subindex 1 oder höher aufgelistet. Die Tabelle beinhaltet folgende Einträge:

Subindex

Nummer des aktuell beschriebenen Untereintrages.

Name

Der Name des Untereintrages.

Datentyp

Hier wird die Größe und die Interpretation des Untereintrages angegeben. Hier gilt immer folgende Schreibweise:

- Es wird unterschieden zwischen Einträgen die vorzeichenbehaftet sind, das wird mit dem Präfix "SIGNED" bezeichnet. Für die vorzeichenunbehafteten Einträge wird das Präfix "UNSIGNED" benutzt.
- Die Größe der Variable in Bit wird an das Präfix angestellt und kann entweder 8, 16 oder 32 sein.

Zugriff

Hier wird die Zugriffsbeschränkung für den Untereintrag eingetragen. Folgende Beschränkungen gibt es:

- "lesen/schreiben": Das Objekt kann sowohl gelesen, als auch geschrieben werden
- "nur lesen": Das Objekt kann nur aus dem Objektverzeichnis gelesen werden. Setzen eines Wertes ist nicht möglich.

PDO-Mapping

Einige Bussysteme, wie CANopen oder EtherCAT unterstützen ein PDO-Mapping. In diesem Tabelleneintrag wird beschrieben, ob der Untereintrag in ein Mapping eingefügt werden darf und in welches. Dabei gibt es folgende Bezeichnungen:

- "no": Das Objekt darf in kein Mapping eingetragen werden.
- "TX-PDO": Das Objekt darf in ein RX Mapping eingetragen werden.
- "RX-PDO": Das Objekt darf in ein TX Mapping eingetragen werden.

Zulässige Werte

In einigen Fällen ist es nur erlaubt, bestimmte Werte in den Untereintrag zu schreiben. Sollte das der Fall sein, werden diese Werte hier aufgelistet. Besteht keine Beschränkung, bleibt das Feld leer.

Vorgabewert

Um die Steuerung beim Einschalten in einen gesicherten Zustand zu bringen ist es nötig, einige Untereinträge mit Werten vor zu belegen. Der Wert, welcher beim Start der Steuerung in den Untereintrag geschrieben wird, wird in diesem Tabelleneintrag notiert.

10.5 Beschreibung

Dieser Abschnitt kann vorhanden sein, wenn die Benutzung zusätzliche Information verlangt. Sollten einzelne Bits eines Objekts oder Untereintrags unterschiedliche Bedeutung haben, so werden Diagramme wie im nachfolgenden Beispiel verwendet.

Beispiel: Das Objekt ist 8 Bit groß, Bit 0 und 1 haben separat eine Funktion. Bit 2 und 3 sind zu einer Funktion zusammengefasst, für Bit 4 bis 7 gilt das gleiche.

7	6	5	4	3	2	1	0
	Beisp	iel [4]		Beisp	iel [2]	В	Α

Beispiel [4]

Beschreibung der Bits 4 bis einschließlich 7, diese Bits gehören logisch zusammen. Die 4 in den eckigen Klammern gibt die Anzahl der zusammengehörigen Bits an. Oftmals wird an der Stelle noch eine Liste mit möglichen Werten und deren Beschreibung angehängt.

Beispiel [2]

Beschreibung der Bits 3 und 2, diese Bits gehören logisch zusammen. Die 2 in den eckigen Klammern gibt die Anzahl der zusammengehörigen Bits an.

- Wert 00_b: Die Beschreibung an dieser Stelle gilt, wenn Bit 2 und Bit 3 auf "0" sind.
- Wert 01_b: Die Beschreibung an dieser Stelle gilt, wenn Bit 2 auf "0" und Bit 3 auf "1" ist.
- Wert 10_b: Die Beschreibung an dieser Stelle gilt, wenn Bit 2 auf "1" und Bit 3 auf "0" ist.
- Wert 11_b: Die Beschreibung an dieser Stelle gilt, wenn Bit 2 und Bit 3 auf "1" sind.

В

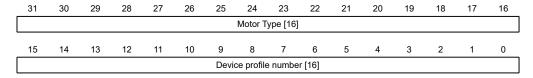
Beschreibung des Bits B, auf die Längenangabe wird bei einem einzelnen Bit verzichtet.

Α

Beschreibung des Bits A, Bits mit grauen Hintergrund bleiben ungenutzt.

1000h Device Type

Funktion


Beschreibt den Steuerungstyp.

Objektbeschreibung

Index	1000 _h
Objektname	Device Type
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00060192 _h
Firmware Version	FIR-v1426
Änderungshistorie	

Beschreibung

Motor Type[16]

Beschreibt den unterstützten Motor-Typ. Die folgenden Werte sind möglich:

Bit 23 bis Bit 16: Wert "1": Servoantrieb

• Bit 23 bis Bit 16: Wert "2": Schrittmotor

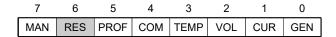
Device profile number[16]

Beschreibt den unterstützten CANopen-Standard.

Werte:

0192_h bzw. 0402_d (Vorgabewert): Der CiA 402-Standard wird unterstützt.

1001h Error Register


Funktion

Fehlerregister: Im Fehlerfall wird das entsprechende Fehlerbit gesetzt. Sollte der Fehler nicht mehr bestehen, wird es automatisch wieder gelöscht.

Objektbeschreibung

Index	1001
muex	1001 _h
Objektname	Error Register
Object Code	VARIABLE
Datentyp	UNSIGNED8
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	00 _h
Firmware Version	FIR-v1426
Änderungshistorie	

Beschreibung

GEN

Genereller Fehler

CUR

Strom

VOL

Spannung

TEMP

Temperatur

COM

Kommunikation

PROF

Betrifft das Geräteprofil

RES

Reserviert, immer "0"

MAN

Hersteller spezifisch: Der Motor drehte sich in die falsche Richtung.

1003h Pre-defined Error Field

Funktion

Dieses Objekt beinhaltet einen Fehlerstapel mit bis zu acht Einträgen.

Objektbeschreibung

Index 1003_h

Objektname Pre-defined Error Field

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar nein
Firmware Version FIR-v1426

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Number Of Errors
Datentyp UNSIGNED8
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00_h

Subindex 01_h

Name Standard Error Field
Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte	
Vorgabewert	00000000 _h
Subindex	02 _h
Name	Standard Error Field
Datentyp	UNSIGNED32
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	03 _h
Name	Standard Error Field
Datentyp	UNSIGNED32
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	04 _h
Name	Standard Error Field
Datentyp	UNSIGNED32
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00000000 _h
Subindex	05 _h
Name	Standard Error Field
Datentyp	UNSIGNED32
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00000000 _h
Subindex	06 _h
Name	Standard Error Field
Datentyp	UNSIGNED32
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h

Subindex	07 _h
Name	Standard Error Field
Datentyp	UNSIGNED32
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	08 _h
Name	Standard Error Field
Datentyp	UNSIGNED32
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h

Beschreibung

Allgemeine Funktionsweise

Tritt ein neuer Fehler auf, wird dieser in Subindex 1 eingetragen. Die bereits vorhandenen Einträge in den Subindizes 1 bis 7 werden um eine Stelle nach hinten verschoben. Der Fehler auf Subindex 7 wird dabei entfernt.

Die Anzahl der bereits aufgetreten Fehler lässt sich aus dem Objekt mit dem Subindex 0 ablesen. Ist im Fehlerstapel zur Zeit kein Fehler eingetragen, dann ist das Auslesen eines der acht Subindizes 1-8 nicht möglich und wird mit einem Fehler (Abort-Code=08000024_h) beantwortet. Wird in den Subindex 0 eine "0" geschrieben, beginnt die Zählung von neuem.

Bitbeschreibung

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Error Number [8] Error					Error C	lass [8]									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Error C	ode [16]							

Error Number [8]

Damit lässt sich der Grund des Fehlers genau eingrenzen. Die Bedeutung der Zahl lässt sich aus nachfolgender Tabelle entnehmen.

Fehlernummer	Beschreibung
0	Watchdog-Reset
1	Eingangsspannung zu hoch
2	Ausgangsstrom zu hoch
3	Eingangsspannung zu niedrig
4	Fehler am Feldbus
5	Motor dreht - trotz aktivierter Sperre - in die falsche Richtung
6	Nur CANopen: NMT-Master braucht zu lange, um Nodeguarding- Anforderung zu schicken
7	Encoderfehler durch elektrische Störung oder defekte Hardware

Fehlernummer	Beschreibung
8	Encoderfehler; Index während des Auto-Setups nicht gefunden
9	Fehler in der AB-Spur
10	Positiver Endschalter und Toleranzzone überschritten
11	Negativer Endschalter und Toleranzzone überschritten
12	Temperatur des Gerätes oberhalb 80°C
13	Die Werte des Objekts 6065_h (Following Error Window) und des Objekts 6066_h (Following Error Time Out) wurden überschritten, es wurde ein Fault ausgelöst.
14	Warnung: Nichtflüchtiger Speicher voll, Neustart der Steuerung erforderlich für Aufräumarbeiten.
15	Motor blockiert
16	Warnung: Nichtflüchtiger Speicher beschädigt, Neustart der Steuerung erforderlich für Aufräumarbeiten.
17	Nur CANopen: Slave brauchte zu lange um PDO Nachrichten zu Senden.
18	Hallsensor fehlerhaft
19	Nur CANopen: PDO aufgrund eines Längenfehlers nicht verarbeitet
20	Nur CANopen: PDO Länge überschritten
21	Warnung: Nichtflüchtiger Speicher voll, Neustart der Steuerung erforderlich für Aufräumarbeiten.
22	Nennstrom muss gesetzt werden (203B _h :01 _h)
23	Encoderauflösung, Polpaarzahl und einige andere Werte sind falsch.
24	Motorstrom ist zu hoch, passen Sie die PI-Parameter an.
25	Interner Softwarefehler, generisch
26	Zu hoher Strom am digitalen Ausgang
27	Nur CANopen: Unerwartete Sync-Länge
28	Nur EtherCAT: Der Motor wurde gestoppt, da von EtherCAT Zustand OP nach SafeOP, oder PreOP geschalten wurde ohne vorher den Motor zu stoppen.
30	Fehler in der Drehzahlüberwachung: Schlupffehler zu groß

Error Class[8]

Dieses Byte ist identisch mit dem Objekt $\mathbf{1001}_{h}$

Error Code[16]

Die Bedeutung der beiden Bytes lässt sich aus der nachfolgenden Tabelle entnehmen.

Error Code	Beschreibung
1000 _h	Allgemeiner Fehler
2300 _h	Strom am Ausgang der Steuerung zu groß
3100 _h	Über-/ Unterspannung am Eingang der Steuerung
4200 _h	Temperaturfehler innerhalb der Steuerung
6010 _h	Software reset (watchdog)
6100 _h	Interner Softwarefehler, generisch
6320 _h	Nennstrom muss gesetzt werden (203B _h :01 _h)
7121 _h	Motor blockiert
7305 _h	Inkrementaler oder Hallsensor fehlerhaft

Error Code	Beschreibung
7600 _h	Warnung: Nichtflüchtiger Speicher voll oder korrupt, Neustart der Steuerung für Aufräumarbeiten
8000 _h	Fehler bei der Feldbusüberwachung
8130 _h	Nur CANopen: "Life Guard" - Fehler oder "Heartbeat" - Fehler
8200 _h	Nur CANopen: Slave brauchte zu lange um PDO Nachrichten zu Senden.
8210 _h	Nur CANopen: PDO wurde nicht verarbeitet aufgrund eines Längen-Fehlers
8220 _h	Nur CANopen: PDO Länge überschritten
8240 _h	Nur CANopen: Unerwartete Sync-Länge
8400 _h	Fehler in der Drehzahlüberwachung: Schlupffehler zu groß
8611 _h	Fehler in der Positionsüberwachung: Schleppfehler zu groß
8612 _h	Fehler in der Positionsüberwachung: Endschalter und Toleranzzone überschritten
9000 _h	Nur EtherCAT: Der Motor wurde gestoppt, da von EtherCAT Zustand OP nach SafeOP, oder PreOP geschalten wurde ohne vorher den Motor zu stoppen.

1008h Manufacturer Device Name

Funktion

Enthält den Gerätenamen als Zeichenkette.

Objektbeschreibung

1008 _h
Manufacturer Device Name
VARIABLE
VISIBLE_STRING
nein
nur lesen
nein
• N5-1-5: N5-1-5
• N5-2-5: N5-2-5
FIR-v1426

1009h Manufacturer Hardware Version

Funktion

Dieses Objekt enthält die Hardware-Version als Zeichenkette.

Objektbeschreibung

Index 1009_h

Objektname Manufacturer Hardware Version

Object Code VARIABLE

Datentyp VISIBLE_STRING

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte

Vorgabewert (

Firmware Version FIR-v1426

Änderungshistorie

100Ah Manufacturer Software Version

Funktion

Dieses Objekt enthält die Software-Version als Zeichenkette.

Objektbeschreibung

Index 100A_h

Objektname Manufacturer Software Version

Object Code VARIABLE

Datentyp VISIBLE_STRING

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte

Vorgabewert FIR-v1748-B538662

Firmware Version FIR-v1426

Änderungshistorie

1010h Store Parameters

Funktion

Mit diesem Objekt lässt sich das Speichern von Objekten starten. Siehe Kapitel Objekte speichern.

Objektbeschreibung

Index 1010_h

Objektname Store Parameters

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1436: Eintrag "Objektname" geändert von

"Store Parameter" auf "Store Parameters".

Firmware Version FIR-v1436: Die Anzahl der Einträge haben sich

geändert von 3 auf 4.

Firmware Version FIR-v1512: Die Anzahl der Einträge haben sich

geändert von 4 auf 5.

Firmware Version FIR-v1540: Die Anzahl der Einträge haben sich

geändert von 5 auf 7.

Firmware Version FIR-v1738-B501312: Die Anzahl der Einträge haben

sich geändert von 7 auf 14.

Wertebeschreibung

Subindex	00 _h
DUDITUEX	UUh

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 0D_h

Subindex 01_h

Name Save All Parameters To Non-volatile Memory

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000001_h

Subindex 02_h

Name Save Communication Parameters To Non-volatile Memory

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000001_h

Subindex 03_h

Name Save Application Parameters To Non-volatile Memory

Datentyp UNSIGNED32

Zugriff lesen/schreiben **PDO-Mapping** nein Zulässige Werte Vorgabewert 0000001_h Subindex 04_{h} Name Save Customer Parameters To Non-volatile Memory Datentyp **UNSIGNED32** Zugriff lesen/schreiben **PDO-Mapping** nein Zulässige Werte Vorgabewert 0000001_h 05_{h} Subindex Name Save Drive Parameters To Non-volatile Memory **UNSIGNED32** Datentyp Zugriff lesen/schreiben **PDO-Mapping** nein Zulässige Werte Vorgabewert 0000001_h Subindex Name Save Tuning Parameters To Non-volatile Memory **UNSIGNED32** Datentyp Zugriff lesen/schreiben **PDO-Mapping** nein Zulässige Werte Vorgabewert 0000001_h Subindex 07_{h} Name Save Miscellaneous Configurations To Non-volatile Memory Datentyp **UNSIGNED32** Zugriff lesen/schreiben **PDO-Mapping** nein Zulässige Werte Vorgabewert 0000001_h Subindex 08_{h} Name Save Reserved1 Configurations To Non-volatile Memory **UNSIGNED32** Datentyp Zugriff lesen/schreiben

Version: 1.0.0 / FIR-v1748

PDO-Mapping

Zulässige Werte

nein

Vanaahaaaat	0000000
Vorgabewert	00000000 _h
Subindex	09 _h
Name	Save Reserved2 Configurations To Non-volatile Memory
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00000000 _h
Subindex	0A _h
Name	Save CANopen Configurations To Non-volatile Memory
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000001 _h
Subindex	0B _h
Name	Save Modbus RTU Configurations To Non-volatile Memory
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000001 _h
Subindex	$0C_{h}$
Name	Save Ethernet Configurations To Non-volatile Memory
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000001 _h
Subindex	$0D_{h}$
Name	Save Profibus Configurations To Non-volatile Memory
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000001 _h

Beschreibung

Jeder Subindex des Objekts steht für eine bestimmte Speicherklasse. Durch Auslesen eines Eintrages kann festgestellt werden, ob diese Speicherkategorie abgespeichert (Wert "1") werden kann oder nicht (Wert="0").

Um den Speichervorgang einer Speicherkategorie zu starten, muss der Wert "65766173 $_h$ " in den jeweiligen Subindex geschrieben werden. Das entspricht dezimal der 1702257011 $_d$ bzw. dem ASCII String " <code>save</code>. Sobald der Speichervorgang abgeschlossen wurde, wird der Speicherbefehl wieder durch den Wert "1" überschrieben, da ein Speichern wieder möglich ist.

Für eine detaillierte Beschreibung siehe Kapitel Objekte speichern.

1011h Restore Default Parameters

Funktion

Mit diesem Objekt kann das gesamte oder Teile des Objektverzeichnis auf die Defaultwerte zurückgesetzt werden. Siehe Kapitel **Objekte speichern**.

Objektbeschreibung

Index	1011 _h
Objektname	Restore Default Parameters
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "Restore Default Parameter" auf "Restore Default Parameters".
	Firmware Version FIR-v1436: Die Anzahl der Einträge haben sich geändert von 2 auf 4.
	Firmware Version FIR-v1512: Die Anzahl der Einträge haben sich geändert von 4 auf 5.
	Firmware Version FIR-v1512: Eintrag "Name" geändert von "Restore The Comm Default Parameters" auf "Restore Communication Default Parameters".
	Firmware Version FIR-v1512: Eintrag "Name" geändert von "Restore The Application Default Parameters" auf "Restore Application Default Parameters".
	Firmware Version FIR-v1540: Die Anzahl der Einträge haben sich geändert von 5 auf 7.
	Firmware Version FIR-v1738-B501312: Die Anzahl der Einträge haben

Version: 1.0.0 / FIR-v1748

sich geändert von 7 auf 14.

Wertebeschreibung

Subindex Name	00 _h Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	$0D_h$
Subindex	01 _h
Name	Restore All Default Parameters
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00000001 _h
Subindex	02 _h
Name	Restore Communication Default Parameters
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00000001 _h
Subindex	03 _h
Name	Restore Application Default Parameters
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	Helli
Vorgabewert	0000001 _h
Subindex	04 _h
Name	Restore Customer Default Parameters
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000001 _h
Subindex	05 _h

Name Restore Drive Default Parameters

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000001_h

Subindex 06_h

Name Restore Tuning Default Parameters

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 07_h

Name Restore Miscellaneous Configurations

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 08_h

Name Restore Reserved1 Configurations To Non-volatile Memory

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 09_h

Name Restore Reserved2 Configurations To Non-volatile Memory

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 0A_h

Name Restore CANopen Configurations To Non-volatile Memory

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000001 _h
Subindex	0B _h
Name	Restore Modbus RTU Configurations To Non-volatile Memory
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000001 _h
Subindex	0C _h
Name	Restore Ethernet Configurations To Non-volatile Memory
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00000001 _h
Subindex	0D _h
Name	Restore Profibus Configurations To Non-volatile Memory
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000001 _h

Beschreibung

Wird der Wert $64616F6C_h$ (bzw. 1684107116_d oder ASCII <code>load</code>) in dieses Objekt geschrieben, werden Teile oder das gesamte Objektverzeichnis auf die Defaultwerte zurückgesetzt. Der verwendete Subindex entscheidet darüber, welcher Bereich zurück gesetzt wird.

Für eine detaillierte Beschreibung siehe Kapitel Speicherung verwerfen.

1018h Identity Object

Funktion

Dieses Objekt liefert generelle Informationen zu dem Gerät wie Hersteller, Produktcode, Revision und Seriennummer.

Tipp

Halten Sie diese Werte bei Serviceanfragen bereit.

Objektbeschreibung

Index 1018_h
Objektname Identity Object
Object Code RECORD
Datentyp IDENTITY
Speicherbar nein
Firmware Version FIR-v1426
Änderungshistorie

Wertebeschreibung

Subindex	00 _h								
Name	Highest Sub-index Supported								
Datentyp	UNSIGNED8								
Zugriff	nur lesen								
PDO-Mapping	nein								
Zulässige Werte									
Vorgabewert	04 _h								
Subindex	01 _h								
Name	Vendor-ID								
Datentyp	UNSIGNED32								
Zugriff	nur lesen								
PDO-Mapping	nein								
Zulässige Werte									
Vorgabewert	0000026C _h								
Subindex	02 _h								
Name	Product Code								
Datentyp	UNSIGNED32								
Zugriff	nur lesen								
PDO-Mapping	nein								
Zulässige Werte									
Vorgabewert	• N5-1-5: 00000054 _h								
	• N5-2-5: 00000055 _h								
Subindex	03 _h								
Name	Revision Number								
Datentyp	UNSIGNED32								
Zugriff	nur lesen								
PDO-Mapping	nein								
Zulässige Werte									

06D40000_h

Version: 1.0.0 / FIR-v1748

Vorgabewert

Subindex 04_h

Name Serial Number
Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

1020h Verify Configuration

Funktion

Dieses Objekt zeigt den Tag und die Zeit der abgespeicherten Konfiguration an.

Ein Konfigurationstool oder ein Master kann dieses Objekt nutzen, um die Konfiguration nach einem Reset zu verifizieren und gegebenenfalls eine Neukonfiguration durchzuführen.

Das Tool muss das Datum und die Uhrzeit setzen, bevor der Speichermechanismus gestartet wird (siehe Kapitel **Objekte speichern**).

Objektbeschreibung

Index 1020_h

Objektname Verify Configuration

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Prüfung

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1540

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 02_h

Subindex 01_h

Name Configuration Date
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 02_h

Name Configuration Time
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Subindex 01_h (Konfigurationsdatum) soll die Anzahl der Tage seit dem 1. Januar 1984 enthalten. Subindex 02_h (Konfigurationszeit) soll die Nummer der Millisekunden seit Mitternacht enthalten.

1F50h Program Data

Funktion

Dieses Objekt wird zum Programmieren von Speicherbereichen der Steuerung verwendet. Jeder Eintrag steht für einen bestimmten Speicherbereich.

Objektbeschreibung

Index	1F50 _h
Objektname	Program Data
Object Code	ARRAY
Datentyp	DOMAIN
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1540
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	03 _h

Subindex	01 _h
Name	Program Data Bootloader/firmware

Datentyp DOMAIN

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 0

Subindex 02_h

Name Program Data NanoJ

Datentyp DOMAIN

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 0

Subindex 03_h

Name Program Data DataFlash

Datentyp DOMAIN

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 0

1F51h Program Control

Funktion

Dieses Objekt wird zum Steuern des Programmierens von Speicherbereichen der Steuerung verwendet. Jeder Eintrag steht für einen bestimmten Speicherbereich.

Objektbeschreibung

Index 1F51_h

Objektname Program Control

Object Code ARRAY
Datentyp UNSIGNED8

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1540

Änderungshistorie

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	03 _h
Subindex	01 _h
Name	Program Control Bootloader/firmware
Datentyp	UNSIGNED8
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00 _h
Subindex	02 _h
Name	Program Control NanoJ
Datentyp	UNSIGNED8
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00 _h
Subindex	03 _h
Name	Program Control DataFlash
Datentyp	UNSIGNED8
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00 _h

1F57h Program Status

Funktion

Dieses Objekt zeigt den Programmierstatus während dem Programmieren von Speicherbereichen der Steuerung an. Jeder Eintrag steht für einen bestimmten Speicherbereich.

Objektbeschreibung

Index	1F57 _h
Objektname	Program Status

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1540

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 03_h

Subindex 01_h

Name Program Status Bootloader/firmware

Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 02_h

Name Program Status NanoJ

Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 03_h

Name Program Status DataFlash

Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

200Fh IEEE 802 MAC Address

Funktion

Dieses Objekt enthält die MAC-Adresse der Steuerung als Zeichenkette.

Objektbeschreibung

Index 200F_h

Objektname IEEE 802 MAC Address

Object Code VARIABLE

Datentyp VISIBLE_STRING

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte

Vorgabewert 0

Firmware Version FIR-v1748-B533384

Änderungshistorie

2010h IP-Configuration

Funktion

Über dieses Objekt wird die Ethernet-Schnittstelle konfiguriert.

Objektbeschreibung

Index 2010_h

Objektname IP-Configuration
Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Ethernet

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte


Vorgabewert 0000006C_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1748-B533384: Eintrag "Speicherbar"

geändert von "ja, Kategorie: Kommunikation" auf "ja, Kategorie:

Ethernet".

Beschreibung

ΙP

Wert = "1": Eine statische IP-Adresse aus dem Objekt **2011**_h wird genutzt und die Netzwerkmaske aus dem Objekt **2012**_h wird genutzt.

UPnP

Wert = "1": Die UPnP (Universal Plug and Play) Benachrichtigungen werden aktiviert

DHCP

Wert = "1": Die IP-Adressvergabe mittels eines DHCP-Servers wird aktiviert

AUTO

Wert = "1": Die IP-Adressvergabe über das AUTO-IP Protokoll wird aktiviert

EXT

Wert = "1": Die IP Adresse wurde von extern durch NanoFlash gesetzt und gilt nur bis zum nächsten Neustart der Steuerung.

NBIOS

Wert = "1": Das NetBIOS-Protokoll wird aktiviert, notwendig vor einer Hostname-Auflösung (z.B. bei einem ping-Kommando).

LLMNR

Wert = "1": Das LLMNR-Protokoll wird aktiviert, notwendig vor einer Hostname-Auflösung (z.B. bei einem ping-Kommando).

2011h Static-IPv4-Address

Funktion

Enthält die statische IPv4-Adresse in Form eines 32-Bit Wortes.

Objektbeschreibung

Index	2011 _h
Objektname	Static-IPv4-Address
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Ethernet
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	C0A80792 _h
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1450: Eintrag "Object Name" geändert von "Static-IP-Address" auf "Static-IPv4-Address".
	Firmware Version FIR-v1748-B533384: Eintrag "Speicherbar" geändert von "ja, Kategorie: Kommunikation" auf "ja, Kategorie: Ethernet".

Beschreibung

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	IP Address Part 1 [8]									IP Address Part 2 [8]					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IP Address Part 3 [8]							ΙP	Address	s Part 4	[8]				

IP Address Part 1 [8]

Gibt den ersten Teil der IP-Adresse an

IP Address Part 2 [8]

Gibt den zweiten Teil der IP-Adresse an

IP Address Part 3 [8]

Gibt den dritten Teil der IP-Adresse an

IP Address Part 4 [8]

Gibt den vierten Teil der IP-Adresse an

Beispiel

Die Adresse 192.168.2.0 wird zuerst in das Hexadezimalsystem umgewandelt und ergibt dann folgenden Konfigurationswert:

 $192 => C0_h$

 $168 => A8_{h}$

 $2 => 02_h$

0 => 0

Der zugehörige Einstellwert lautet dann COA80200h.

2012h Static-IPv4-Subnet-Mask

Funktion

Enthält die Subnetzmaske der statischen IP-Adresse in Form eines 32-Bit Wortes.

Objektbeschreibung

Firmware Version

Index	2012 _h
Objektname	Static-IPv4-Subnet-Mask
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Ethernet
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	FFFFF00 _h

FIR-v1426

Änderungshistorie Firmware Version FIR-v1450: Eintrag "Object Name" geändert von

"Static-IP-Subnet-Mask" auf "Static-IPv4-Subnet-Mask".

Firmware Version FIR-v1748-B533384: Eintrag "Speicherbar" geändert von "ja, Kategorie: Kommunikation" auf "ja, Kategorie: Ethernet".

Beschreibung

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Subnet Mask Part 1 [8]									Subnet Mask Part 2 [8]					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Subnet Mask Part 3 [8]								Sul	onet Mas	sk Part 4	[8]			

Subnet Mask Part 1 [8]

Gibt den ersten Teil der Subnetzmaske an

Subnet Mask Part 2 [8]

Gibt den zweiten Teil der Subnetzmaske an

Subnet Mask Part 3 [8]

Gibt den dritten Teil der Subnetzmaske an

Subnet Mask Part 4 [8]

Gibt den vierten Teil der Subnetzmaske an

Beispiel

Die Klasse-C Netzwerkmaske 255.255.255.0 wird zuerst in das Hexadezimalsystem umgewandelt und ergibt dann folgenden Konfigurationswert:

 $255 => FF_{h}$

0 => 0

Der zugehörige Einstellwert lautet dann FFFFFF00h.

2013h Static-IPv4-Gateway-Address

Funktion

Enthält die statische IP-Gateway-Adresse in Form eines 32-Bit Wortes.

Objektbeschreibung

Index 2013_h
Objektname Static-IPv4-Gateway-Address

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Ethernet Zugriff lesen/schreiben

PDO-Mapping nein

1 DO Mapping

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1446

Änderungshistorie

Firmware Version FIR-v1512: Eintrag "Object Name" geändert von "Static-IP-Gateway-Address" auf "Static-IPv4-Gateway-Address".

Firmware Version FIR-v1748-B533384: Eintrag "Speicherbar" geändert von "ja, Kategorie: Kommunikation" auf "ja, Kategorie:

Ethernet".

Beschreibung

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		IP-Gate	way-Ad	dress Pa	art 1 [8]			IP-Gateway-Address Part Part 2 [8]							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IP-Gateway-Address Part 3 [8]								IP	-Gatewa	ay-Addre	ess Part	Part 4 [8]	

IP-Gateway-Adress Part 1 [8]

Gibt den ersten Teil der IP-Gateway-Adresse an

IP-Gateway-Adress Part 2 [8]

Gibt den zweiten Teil der IP-Gateway-Adresse an

IP-Gateway-Adress 3 [8]

Gibt den dritten Teil der IP-Gateway-Adresse an

IP-Gateway-Adress 4 [8]

Gibt den vierten Teil der IP-Gateway-Adresse an

Beispiel

Die Adresse 192.168.2.0 wird zuerst in das Hexadezimalsystem umgewandelt und ergibt dann folgenden Konfigurationswert:

 $192 => C0_h$

 $168 => A8_{h}$

 $2 => 02_h$

0 => 0

Der zugehörige Einstellwert lautet dann COA80200h.

2014h Current-IPv4-Address

Funktion

Enthält die derzeit aktive IP-Adresse in Form eines 32-Bit Wortes.

Objektbeschreibung

Index 2014_h

Objektname Current-IPv4-Address

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1450: Eintrag "Object Name" geändert von

"Current-IP-Address" auf "Current-IPv4-Address".

Beschreibung

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	IP Address Part 1 [8]					IP Address Part 2 [8]									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	IP Address Part 3 [8]							IP	Address	Part 4	[8]				

IP Address Part 1 [8]

Gibt den ersten Teil der IP-Adresse an

IP Address Part 2 [8]

Gibt den zweiten Teil der IP-Adresse an

IP Address Part 3 [8]

Gibt den dritten Teil der IP-Adresse an

IP Address Part 4 [8]

Gibt den vierten Teil der IP-Adresse an

Beispiel

Die Adresse 192.168.2.0 wird zuerst in das Hexadezimalsystem umgewandelt und ergibt dann folgenden Konfigurationswert:

 $192 => C0_h$

 $168 => A8_{h}$

 $2 => 02_h$

0 => 0

Der zugehörige Einstellwert lautet dann COA80200h.

2015h Current-IPv4-Subnet-Mask

Funktion

Enthält die derzeit aktive Subnetzmaske der statischen IP-Adresse in Form eines 32-Bit Wortes.

Objektbeschreibung

Index 2015_h

Objektname Current-IPv4-Subnet-Mask

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar nein
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1450: Eintrag "Object Name" geändert von

"Current-IP-Subnet-Mask" auf "Current-IPv4-Subnet-Mask".

Beschreibung

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Subnet Mask Part 1 [8]					Subnet Mask Part 2 [8]									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Subnet Mask Part 3 [8]							Sul	onet Mas	sk Part 4	[8]				

Subnet Mask Part 1 [8]

Gibt den ersten Teil der Subnetzmaske an

Subnet Mask Part 2 [8]

Gibt den zweiten Teil der Subnetzmaske an

Subnet Mask Part 3 [8]

Gibt den dritten Teil der Subnetzmaske an

Subnet Mask Part 4 [8]

Gibt den vierten Teil der Subnetzmaske an

Beispiel

Die Klasse-C Netzwerkmaske 255.255.255.0 wird zuerst in das Hexadezimalsystem umgewandelt und ergibt dann folgenden Konfigurationswert:

 $255 => FF_h$

0 => 0

Der zugehörige Einstellwert lautet dann FFFFFF00h.

2016h Current-IPv4-Gateway-Address

Funktion

Dieses Objekt enthält die derzeit aktive Gateway IP-Adresse in Form eines 32-Bit Wortes.

Objektbeschreibung

Index 2016_h

Objektname Current-IPv4-Gateway-Address

171

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1540

Änderungshistorie

2028h MODBUS Slave Address

Funktion

Dieses Objekt enthält die Slave-Adresse für Modbus. Siehe Kapitel Kommunikationseinstellungen.

Objektbeschreibung

Index 2028_h

Objektname MODBUS Slave Address

Object Code VARIABLE
Datentyp UNSIGNED8

Speicherbar ja, Kategorie: Modbus RTU

Zugriff lesen/schreiben

PDO-Mapping nein
Zulässige Werte 1-247
Vorgabewert 05_h

Firmware Version FIR-v1436

Änderungshistorie Firmware Version FIR-v1748-B531667: Eintrag "Speicherbar"

geändert von "ja, Kategorie: Kommunikation" auf "ja, Kategorie:

Modbus RTU".

202Ah MODBUS RTU Baudrate

Funktion

Dieses Objekt enthält die Baudrate des Modbus in Bd. Siehe Kapitel Kommunikationseinstellungen.

Objektbeschreibung

Index 202A_h

Objektname MODBUS RTU Baudrate

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Modbus RTU

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

 $\begin{array}{ll} \mbox{Vorgabewert} & \mbox{00004B00}_{\mbox{h}} \\ \mbox{Firmware Version} & \mbox{FIR-v1436} \end{array}$

Änderungshistorie Firmware Version FIR-v1748-B531667: Eintrag "Speicherbar"

geändert von "ja, Kategorie: Kommunikation" auf "ja, Kategorie:

Modbus RTU".

202Ch MODBUS RTU Stop Bits

Funktion

Dieses Objekt enthält die Anzahl der Stop-Bits des Modbus.

Objektbeschreibung

Index	202C _h
Objektname	MODBUS RTU Stop Bits
Object Code	VARIABLE
Datentyp	UNSIGNED8
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	01 _h
Firmware Version	FIR-v1436
Änderungshistorie	Firmware Version FIR-v1540: Eintrag "Speicherbar" geändert von "ja, Kategorie: Kommunikation" auf "nein".
	Firmware Version FIR-v1540: Tabellen-Eintrag "Zugriff" bei Subindex 00 geändert von "lesen/schreiben" auf "nur lesen".

Beschreibung

Die Anzahl der Stopbits ist abhängig von der Parity welche im Objekt 202D_h eingestellt werden kann.

Anzahl der Stopbits	Wert in Objekt 202C _h
1	0
2	2

202Dh MODBUS RTU Parity

Funktion

Dieses Objekt stellt bei Modbus RTU die Anzahl der Paritybits und Stopbits ein.

Objektbeschreibung

Index	202D _h
Objektname	MODBUS RTU Parity

Object Code VARIABLE
Datentyp UNSIGNED8

Speicherbar ja, Kategorie: Modbus RTU

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 04_h

Firmware Version FIR-v1540

Änderungshistorie Firmware Version FIR-v1748-B531667: Eintrag "Speicherbar"

geändert von "ja, Kategorie: Kommunikation" auf "ja, Kategorie:

Modbus RTU".

Beschreibung

Folgende Werte gelten:

Wert "0x00": Parity None, Stop Bits 2
Wert "0x04": Parity Even, Stop Bits 1
Wert "0x06": Parity Odd, Stop Bits 1

2030h Pole Pair Count

Funktion

Enthält die Polpaarzahl des angeschlossenen Motors.

Objektbeschreibung

Index 2030_h

Objektname Pole Pair Count
Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Tuning Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000032_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1540: Eintrag "Saveable" geändert von "nein"

auf "ja, Kategorie: Tuning".

2031h Maximum Current

Funktion

Ist die I²t-Überwachung nicht aktiv, wird hier der im Motordatenblatt angegebene Effektivstrom in mA eingetragen. Wird die Closed Loop Betriebsart verwendet oder ist die I²t-Überwachung aktiviert, wird hier der Maximalstromwert in mA angegeben.

Steuerungsintern wird der eingegebene Wert immer als Effektivwert interpretiert.

Objektbeschreibung

Index 2031_h Objektname Maximum Current Object Code **VARIABLE** Datentyp **UNSIGNED32** Speicherbar ja, Kategorie: Tuning lesen/schreiben Zugriff **PDO-Mapping** nein Zulässige Werte Vorgabewert N5-1-5: 000003E8_h N5-2-5: 00000708_h Firmware Version FIR-v1426 Änderungshistorie Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von "ja, Kategorie: Applikation" auf "ja, Kategorie: Tuning". Firmware Version FIR-v1614: Eintrag "Object Name" geändert von "Peak Current" auf "Max Current".

2034h Upper Voltage Warning Level

Funktion

Dieses Objekt enthält den Schwellwert für den Fehler "Überspannung" in Millivolt.

Objektbeschreibung

Index 2034_h Upper Voltage Warning Level Objektname Object Code **VARIABLE** Datentyp **UNSIGNED32** Speicherbar ja, Kategorie: Applikation Zugriff lesen/schreiben **PDO-Mapping** nein Zulässige Werte Vorgabewert N5-1-5: 000128E0_h N5-2-5: 0000C92C_h Firmware Version FIR-v1426 Änderungshistorie

Beschreibung

Steigt die Eingangsspannung der Steuerung über diesen Schwellwert, wird der Motor abgeschaltet und ein Fehler ausgelöst. Dieser Fehler setzt sich automatisch zurück, wenn die Eingangsspannung kleiner als (Spannung des Objekts 2034_h minus 2 Volt) ist.

2035h Lower Voltage Warning Level

Funktion

Dieses Objekt enthält den Schwellwert für den Fehler "Unterspannung" in Millivolt.

Objektbeschreibung

Index	2035 _h
Objektname	Lower Voltage Warning Level
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00002710 _h
Firmware Version	FIR-v1426
Änderungshistorie	

Beschreibung

Fällt die Eingangsspannung der Steuerung unter diesen Schwellwert, wird der Motor abgeschaltet und ein Fehler ausgelöst. Der Fehler setzt sich automatisch zurück, wenn die Eingangsspannung größer als die Spannung des Objekts 2035_h plus 2 Volt ist.

2036h Open Loop Current Reduction Idle Time

Funktion

Dieses Objekt beschreibt die Zeit in Millisekunden, die sich der Motor im Stillstand befinden muss, bis die Stromabsenkung aktiviert wird.

Objektbeschreibung

Index	2036 _h
Objektname	Open Loop Current Reduction Idle Time
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	000003E8 _h
Firmware Version	FIR-v1426
Änderungshistorie	

2037h Open Loop Current Reduction Value/factor

Funktion

Dieses Objekt beschreibt den Effektivstrom, auf den der Motorstrom reduziert werden soll, wenn die Stromabsenkung im Open Loop aktiviert wird (Bit 3 in **3202**_h = "1") und sich der Motor im Stillstand befindet.

Objektbeschreibung

Index	2037 _h
Objektname	Open Loop Current Reduction Value/factor
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	FFFFFCE _h
Firmware Version	FIR-v1426
Änderungshistorie	

Beschreibung

Wert von 2037_h größer/gleich 0 und kleiner als Wert 2031_h

Strom wird auf den hier eingetragenen Wert reduziert. Der Wert wird in mA und als Effektivwert interpretiert.

Wert von 2037_h im Bereich von -1 bis -100

Der eingetragene Wert wird als eine Prozentzahl interpretiert und bestimmt die Reduktion des Nennstroms in **2037**_h. Für die Berechnung wird der Wert in **2031**_h herangezogen.

Beispiel: Das Objekt **2031**_h hat den Wert 4200 mA. Der Wert -60 in **2037**_h senkt den Strom um 60% von **2031**_h ab, somit ergibt sich eine Stromabsenkung auf einen Effektivwert von **2031**_h * $(2037_h + 100) / 100 = 1680$ mA.

Die Angabe -100 in **2037**_h würde z.B. bedeuten, dass eine Stromabsenkung auf einen Effektivwert von 0 mA eingestellt wird.

Hinweis

Falls ein Nennstrom größer 0 in **203B**_h:01 eingetragen ist, wird der kleinere Wert von **2031**_h und **203B**_h:01 als Nennstrom zur Berechnung der Stromreduzierung herangezogen.

2038h Brake Controller Timing

Funktion

Dieses Objekt enthält die Zeiten für die *Bremsensteuerung* in Millisekunden sowie die PWM-Frequenz und den Tastgrad.

Objektbeschreibung

Index 2038_h

Objektname Brake Controller Timing

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Firmware Version FIR-v1426

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 06_h

Subindex 01_h

Name Close Brake Idle Time

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 000003E8_h

Subindex 02_h

Name Shutdown Power Idle Time

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 000003E8_h

Subindex 03_h

Name Open Brake Delay Time

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 000003E8_h

Subindex	04.
JUDITUEX	Uth

Name Start Operation Delay Time

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 05_h

Name PWM Frequency
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte zwischen 0 und 2000 (7D0_h)

Vorgabewert 00000000_h

Subindex 06_h

Name PWM Duty Cycle
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte 0, zwischen 2 und 100 (64_h)

Vorgabewert 00000000_h

Beschreibung

Die Subindizes haben folgende Funktionen:

- 01_h: Zeit zwischen dem Motorstillstand und dem Schließen der Bremse.
- 02_h: Zeit zwischen dem Schließen der Bremse und dem Abschalten des Motorstroms.
- 03_h: Zeit zwischen dem Einschalten des Motorstroms und dem Öffnen der Bremse.
- 04_h: Zeit zwischen dem Öffnen der Bremse und dem Erreichen des Zustands Operation enabled der CiA 402 Power State Machine.
- 05_h: Frequenz der Bremsen-PWM in Hertz.
- 06_h: Tastgrad der Bremsen-PWM in Prozent.

2039h Motor Currents

Funktion

Dieses Objekt enthält die gemessenen Motorströme in mA.

Objektbeschreibung

Index 2039_h

Objektname Motor Currents

Object Code ARRAY
Datentyp INTEGER32

Speicherbar nein Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1504: Tabellen-Eintrag "PDO-Mapping" bei

Subindex 01 geändert von "nein" auf "TX-PDO".

Firmware Version FIR-v1504: Tabellen-Eintrag "PDO-Mapping" bei

Subindex 02 geändert von "nein" auf "TX-PDO".

Firmware Version FIR-v1504: Tabellen-Eintrag "PDO-Mapping" bei

Subindex 03 geändert von "nein" auf "TX-PDO".

Firmware Version FIR-v1504: Tabellen-Eintrag "PDO-Mapping" bei

Subindex 04 geändert von "nein" auf "TX-PDO".

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	04 _h
Subindex	01 _h
Name	I_d
Datentyp	INTEGER32
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	00000000 _h
Subindex	02 _h
Name	I_q
Datentyp	INTEGER32
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	03 _h
Name	l_a
Datentyp	INTEGER32
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	

0000000_h

Version: 1.0.0 / FIR-v1748

Vorgabewert

 $\begin{array}{ll} \text{Subindex} & \quad \text{04}_{\text{h}} \\ \text{Name} & \quad \text{I_b} \end{array}$

Datentyp INTEGER32
Zugriff nur lesen
PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Hinweis

Die Motorströme I_d (Subindex 01_h) und I_q (Subindex 02_h) werden nur angezeigt, wenn der **Closed Loop aktiviert** wurde, sonst wird der Wert 0 ausgegeben.

203Ah Homing On Block Configuration

Funktion

Dieses Objekt enthält die Parameter für das Homing auf Block (siehe Kapitel Homing)

Objektbeschreibung

Index 203A_h

Objektname Homing On Block Configuration

Object Code ARRAY
Datentyp INTEGER32

Speicherbar ja, Kategorie: Applikation

Zugriff

PDO-Mapping Zulässige Werte Vorgabewert

Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1540: Die Anzahl der Einträge haben sich

geändert von 4 auf 3.

Firmware Version FIR-v1540: Eintrag "Name" geändert von "Period Of

Blocking" auf "Block Detection Time".

Firmware Version FIR-v1614: Eintrag "Data Type" geändert von

"UNSIGNED32" auf "INTEGER32".

Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

Firmware Version FIR-v1614: Eintrag "Data type" geändert von

"UNSIGNED32" auf "INTEGER32".

Firmware Version FIR-v1614: Eintrag "Data type" geändert von

"UNSIGNED32" auf "INTEGER32".

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	02 _h
Subindex	01 _h
Name	Minimum Current For Block Detection
Datentyp	INTEGER32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	FFFFFBA _h
Subindex	02 _h
Name	Block Detection Time
Datentyp	INTEGER32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	000000C8 _h

Beschreibung

Die Subindizes haben folgende Funktion:

- 01_h: Gibt den Stromgrenzwert an, ab dem ein Blockieren detektiert werden soll. Positive Zahlenwerte geben die Stromgrenze in mA an, negative Zahlen einen Prozentwert von Objekt 2031_h:01_h. Beispiel: der Wert "1000" entspricht 1000 mA (=1 A), der Wert "-70" entspricht 70% von 2031_h
- 02_h: Gibt die Zeit in ms an, die der Motor nach der Blockdetektion trotzdem noch gegen den Block fahren soll.

203Bh I2t Parameters

Funktion

Dieses Objekt hält die Parameter für die 1²t-Überwachung.

Die I^2 t-Überwachung wird aktiviert, in dem in $\mathbf{203B_h}$:01 und $\mathbf{203B_h}$:02 ein Wert größer 0 eingetragen wird (siehe I2t Motor-Überlastungsschutz).

l²t kann nur für den *Closed Loop*-Betrieb verwendet werden, mit einer Ausnahme: Wenn l²t im *Open Loop*-Betrieb aktiviert ist, wird der Strom auf den kleineren der beiden Werte von **203B**_h und **2031**_h begrenzt.

Objektbeschreibung

Index 203B_h

Objektname I2t Parameters

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Tuning

Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1512: Eintrag "Savable" geändert von "nein"

auf "ja, Kategorie: Applikation".

Firmware Version FIR-v1512: Die Anzahl der Einträge haben sich

geändert von 7 auf 8.

Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von "ja,

Kategorie: Applikation" auf "ja, Kategorie: Tuning".

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 07_h

Subindex 01_h

Name Nominal Current
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 02_h

Name Maximum Duration Of Peak Current

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 03_h

Name Threshold
Datentyp UNSIGNED32

Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	00000000 _h	
Subindex	04 _h	
Name	CalcValue	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	00000000 _h	
Subindex	05 _h	
Name	LimitedCurrent	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	00000000 _h	
Subindex	06 _h	
Name	Status	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	00000000 _h	
Subindex	07 _h	
Name	ActualResistance	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	00000000 _h	

Beschreibung

Die Subindizes sind in zwei Gruppen geteilt: Subindex 01_h und 02_h enthalten Parameter zur Steuerung, Subindex 03_h bis 06_h sind Statuswerte. Die Funktionen sind wie folgt:

- 01_h: Hier wird der im Motordatenblatt angegebene Nennstrom in mA eingetragen. Dieser muss kleiner als der eingegebene Strom in Objekt 2031_h sein, sonst wird die Überwachung nicht aktiviert. Der angegebene Wert wird als Effektivwert interpretiert.
- 02_h: Gibt die maximale Dauer des Spitzenstroms in ms an.

- 03_h: Threshold, gibt die Grenze in mA an, von der abhängt, ob auf Maximalstrom oder Nennstrom geschalten wird.
- 04_h: CalcValue, gibt den berechneten Wert an, welcher mit Threshold verglichen wird, um den Strom einzustellen.
- 05_h: LimitedCurrent, zeigt den gegenwärtigen Strom als Effektivwert an, der von I²t eingestellt wurde.
- 06_h: aktueller Status. Ist der Subentry-Wert "0", ist I²t deaktiviert, ist der Wert "1", wird I²t aktiviert.

203Dh Torque Window

Funktion

Gibt relativ zum Zieldrehmoment einen symmetrischen Bereich an, innerhalb dessen das Ziel als erreicht gilt.

Wird der Wert auf "FFFFFFF"_h gesetzt, wird die Überwachung abgeschaltet, das Bit "Target reached" im Objekt **6041**_h (Statusword) wird nie gesetzt.

Objektbeschreibung

Index	203D _h						
Objektname	Torque Window						
Object Code	VARIABLE						
Datentyp	UNSIGNED16						
Speicherbar	ja, Kategorie: Applikation						
Zugriff	lesen/schreiben						
PDO-Mapping	RX-PDO						
Zulässige Werte							
Vorgabewert	0000 _h						
Firmware Version	FIR-v1540						
Änderungshistorie	Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".						

203Eh Torque Window Time Out

Funktion

Das Istdrehmoment muss sich für diese Zeit (in Millisekunden) innerhalb des "Torque Window" (203D_h) befinden, damit das Zieldrehmoment als erreicht gilt.

Objektbeschreibung

Index	203E _h
Objektname	Torque Window Time Out
Object Code	VARIABLE
Datentyp	UNSIGNED16
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	$0000_{\rm h}$

Firmware Version FIR-v1540

Änderungshistorie Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

Firmware Version FIR-v1738-B501312: Eintrag "Object Name"

geändert von "Torque Window Time" auf "Torque Window Time Out".

203Fh Max Slippage Time Out

Funktion

Zeit in Millisekunden, bis ein zu großer Schlupffehler im Modus Profile Velocity zu einer Fehlermeldung führt.

Objektbeschreibung

Index 203F_h

Objektname Max Slippage Time Out

Object Code VARIABLE **UNSIGNED16** Datentyp

Speicherbar ja, Kategorie: Applikation

lesen/schreiben Zugriff

RX-PDO PDO-Mapping

Zulässige Werte

0064_h Vorgabewert

FIR-v1738-B501312 Firmware Version

Anderungshistorie

Beschreibung

Weicht die Istgeschwindigkeit von der Sollgeschwindigkeit so stark ab, dass der Wert (Absolutbetrag) dieses Objekts überschritten wird, wird das Bit 13 im Objekt 6041h gesetzt. Die Abweichung muss länger andauern als die Zeit im Objekt 203F_h.

Im Objekt 3700_h kann eine Reaktion auf den Schlupffehler gesetzt werden. Wenn eine Reaktion definiert ist, wird auch ein Fehler im Objekt 1003h eingetragen.

2056h Limit Switch Tolerance Band

Funktion

Gibt an, wie weit positive oder negative Endschalter überfahren werden dürfen, bis die Steuerung einen Fehler auslöst.

Dieses Toleranzband ist beispielsweise erforderlich, um Referenzfahrten - bei denen Endschalter betätigt werden können - fehlerfrei abschließen zu können.

Objektbeschreibung

Index 2056_h

Limit Switch Tolerance Band Objektname

Object Code VARIABLE

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping

Zulässige Werte

Vorgabewert

000001F4_h FIR-v1426

TX-PDO

Firmware Version Änderungshistorie

2057h Clock Direction Multiplier

Funktion

Mit diesem Wert wird der Takt-Zählwert im **Takt-Richtungs-Modus** multipliziert, bevor er weiterverarbeitet wird.

Objektbeschreibung

Index 2057_h

Objektname Clock Direction Multiplier

Object Code VARIABLE
Datentyp INTEGER32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000080_h Firmware Version FIR-v1426

Änderungshistorie

2058h Clock Direction Divider

Funktion

Durch diesen Wert wird der Takt-Zählwert im **Takt-Richtungs-Modus** dividiert, bevor er weiterverarbeitet wird.

Objektbeschreibung

Index 2058_h

Objektname Clock Direction Divider

Object Code VARIABLE
Datentyp INTEGER32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000001_h

Firmware Version FIR-v1426

Änderungshistorie

2059h Encoder Configuration

Funktion

Mit diesem Objekt kann die Versorgungsspannung und der Typ des Encoders umgeschaltet werden.

Objektbeschreibung

Index 2059_h

Objektname Encoder Configuration

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Tuning Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von "ja,

Kategorie: Applikation" auf "ja, Kategorie: Tuning".

Beschreibung

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														TYPE	VOLT

VOLT

Wird dieses Bit auf den Wert "0" gesetzt, wird die Versorgungsspannung für den Encoder auf 5V gesetzt. Wird das Bit auf den Wert "1" gesetzt, wird die Versorgungsspannung auf 24V gesetzt

TYPE

Legt den Typ des Encoders fest. Das bit muss den Wert "0" bei einem differentiellen Encoder haben. Für einen single-ended Encoder muss das Bit auf "1" gesetzt werden.

205Ah Absolute Sensor Boot Value (in User Units)

Funktion

Tipp

Dieses Objekt hat nur bei Verwendung eines Absolut-Encoders eine Funktion. Wird kein Absolut-Encoder verwendet, ist der Wert immer 0.

Aus diesem Objekt kann die initiale Encoderposition beim Einschalten der Steuerung (in **benutzerdefinierten Einheiten**) ausgelesen werden.

Objektbeschreibung

•	
Index	205A _h
Objektname	Absolute Sensor Boot Value (in User Units)
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h
Firmware Version	FIR-v1446
Änderungshistorie	Firmware Version FIR-v1512: Tabellen-Eintrag "Zugriff" bei Subindex 00 geändert von "lesen/schreiben" auf "nur lesen".
	Firmware Version FIR-v1738-B501312: Eintrag "Object Name" geändert von "Encoder Boot Value" auf "Absolute Sensor Boot Value (in User Units)".
	Firmware Version FIR-v1738-B501312: Eintrag "Datentyp" geändert von "UNSIGNED32" auf "INTEGER32".

205Bh Clock Direction Or Clockwise/Counter Clockwise Mode

Funktion

Mit diesem Objekt lässt sich der Takt-Richtungs-Modus (Wert = "0") auf den **Rechts-/Linkslauf-Modus** (Wert = "1") umschalten.

Objektbeschreibung

Index	205B _h
Objektname	Clock Direction Or Clockwise/Counter Clockwise Mode
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00000000 _h
Firmware Version	FIR-v1504
Änderungshistorie	

2084h Bootup Delay

Funktion

Definiert den Zeitraum zwischen Anlegen der Versorgungsspannung an die Steuerung und der Funktionsbereitschaft der Steuerung in Millisekunden.

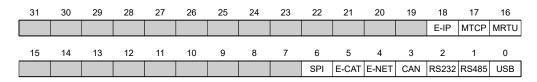
Objektbeschreibung

Index	2084 _h
Objektname	Bootup Delay
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h
Firmware Version	FIR-v1426
Änderungshistorie	

2101h Fieldbus Module Availability

Funktion

Zeigt die verfügbaren Feldbusse an.


Objektbeschreibung

Index	2101 _h						
Objektname	Fieldbus Module Availability						
Object Code	VARIABLE						
Datentyp	UNSIGNED32						
Speicherbar	nein						
Zugriff	nur lesen						
PDO-Mapping	nein						
Zulässige Werte							
Vorgabewert	00010012 _h						
Firmware Version	FIR-v1426						
Änderungshistorie	Firmware Version FIR-v1626: Eintrag "Object Name" geändert von "Fieldbus Module" auf "Fieldbus Module Availability".						

Beschreibung

Die Bits 0 bis 15 zeigen die physikalische Schnittstelle an, die Bits 16 bis 31 das benutzte Protokoll (falls notwendig).

USB

Wert = "1": Der Feldbus USB ist verfügbar.

RS-485

Wert = "1": Eine RS-485 Schnittstelle ist verfügbar.

RS-232

Wert = "1": Eine RS-232 Schnittstelle ist verfügbar.

CAN

Wert = "1": Der Feldbus CANopen ist verfügbar.

E-NET

Wert = "1": Eine Ethernet Schnittstelle ist verfügbar.

E-CAT

Wert = "1": Eine EtherCAT Schnittstelle ist verfügbar.

SPI

Wert = "1": Eine SPI Schnittstelle ist verfügbar.

MRTU

Wert = "1": Das benutzte Protokoll ist Modbus RTU.

MTCP

Wert = "1": Das benutzte Protokoll ist Modbus TCP

E-IP

Wert = "1": Das benutzte Protokoll ist EtherNet/IP™

2102h Fieldbus Module Control

Funktion

Mit diesem Objekt können bestimmte Feldbusse (physikalischen Schnittstellen und Protokolle) aktiviert/deaktiviert werden.

Objektbeschreibung

Index 2102_h

Objektname Fieldbus Module Control

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Kommunikation

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00010012_h

Firmware Version

FIR-v1540

Änderungshistorie

Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "ja,

Kategorie: Applikation" auf "ja, Kategorie: Kommunikation".

Beschreibung

Im Objekt **2103**_h:1_h werden alle physikalischen Schnittstellen/Protokolle angezeigt, welche aktiviert/ deaktiviert werden können. Diese können in diesem Objekt (2102_h) geschaltet werden. Der gegenwärtige Status der aktivierten Feldbusse steht im Objekt **2103**_h:2_h.

Dabei gilt die folgende Verteilung der Bits:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
													E-IP	MTCP	MRTU
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									SPI	E-CAT	E-NET	CAN	RS232	RS485	USB

USB

USB Schnittstelle

RS-485

RS-485 Schnittstelle

RS-232

RS-232 Schnittstelle

CAN

CANopen Schnittstelle

E-NET

EtherNET Schnittstelle

E-CAT

EtherCAT Schnittstelle

SPI

SPI Schnittstelle

MRTU

Modbus RTU Protokoll

MTCP

Modbus TCP Protokoll

E-IP

EtherNet/IP[™] Protokoll

2103h Fieldbus Module Status

Funktion

Zeigt die aktiven Feldbusse an.

Objektbeschreibung

 $\begin{array}{ll} \text{Index} & 2103_{\text{h}} \\ \text{Objektname} & \text{Fieldbus Module Status} \\ \text{Object Code} & \text{ARRAY} \end{array}$

Object Code ANNAT

Datentyp UNSIGNED32

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1540

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 02_h

Subindex 01_h

Name Fieldbus Module Disable Mask

Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein

PDO-Mapping
Zulässige Werte

Vorgabewert 00000012_h

Subindex 02_h

Name Fieldbus Module Enabled

Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 00010012_h

Beschreibung

Subindex 1 (Fieldbus Module Disable Mask): Im diesem Subindex werden alle physikalischen Schnittstellen und Protokolle angezeigt, welche aktiviert oder deaktiviert werden können. Ein Wert "1" bedeutet, dass dieser Feldbus deaktivierbar ist.

Subindex 2 (Fieldbus Module Enabled): Dieser Subindex zeigt alle zur Zeit aktivierten physikalischen Schnittstellen und Protokolle an. Der Wert "1" bedeutet, dass der Feldbus aktiv ist.

Für Subindex 1 und 2 gilt folgende Verteilung der Bits:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
													E-IP	MTCP	MRTU
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									SPI	E-CAT	E-NET	CAN	RS232	RS485	USB

USB

USB Schnittstelle

RS-485

RS-485 Schnittstelle

RS-232

RS-232 Schnittstelle

CAN

CANopen Schnittstelle

E-NET

EtherNET Schnittstelle

E-CAT

EtherCAT Schnittstelle

SPI

SPI Schnittstelle

MRTU

Modbus RTU Protokoll

MTCP

Modbus TCP Protokoll

E-IP

EtherNet/IP[™] Protokoll

2300h NanoJ Control

Funktion

Steuert die Ausführung eines NanoJ-Programms.

Objektbeschreibung

Index 2300_h

Objektname NanoJ Control
Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1436: Eintrag "Object Name" geändert von

"VMM Control" auf "NanoJ Control".

Beschreibung

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															ON

ON

Schaltet das NanoJ-Programm ein (Wert = "1") oder aus (Wert = "0").

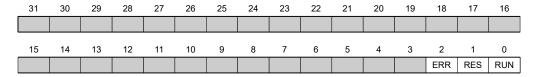
Bei einer steigenden Flanke in Bit 0 wird das Programm zuvor neu geladen und der Variablenbereich zurückgesetzt.

Hinweis

Das Starten des NanoJ Programms kann bis zu 200ms dauern.

2301h NanoJ Status

Funktion


Zeigt den Betriebszustand des Benutzerprogramms an.

Objektbeschreibung

2301_h Index Objektname NanoJ Status Object Code **VARIABLE** Datentyp **UNSIGNED32** Speicherbar nein Zugriff nur lesen **PDO-Mapping** TX-PDO Zulässige Werte Vorgabewert 0000000_h Firmware Version FIR-v1426 Änderungshistorie Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "VMM Status" auf "NanoJ Status".

Beschreibung

RUN

Wert = "0": Programm ist angehalten, Wert = "1": NanoJ-Programm läuft.

RES

Reserviert.

ERR

Programm wurde mit Fehler beendet. Fehlerursache kann aus dem Objekt **2302**_h ausgelesen werden.

2302h NanoJ Error Code

Funktion

Zeigt an, welcher Fehler bei der Ausführung des Benutzerprogramms aufgetreten ist.

Objektbeschreibung

Index	2302 _h
Objektname	NanoJ Error Code
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "VMM Error Code" auf "NanoJ Error Code".

Beschreibung

Fehlercodes bei Programmausführung:

Nummer	Beschreibung
0000 _h	Kein Fehler
0001 _h	Firmware unterstützt verwendete Funktion (noch) nicht
0002 _h	Nicht oder falsch initialisierter Pointer
0003 _h	Unerlaubter Zugriff auf System-Resource
0004 _h	Hardfault (interner Fehler)
0005 _h	Code wird zu lange ohne yield() oder sleep() ausgeführt

Nummer	Beschreibung							
0006 _h	Unerlaubter Zugriff auf System-Resource							
0007 _h	Zu viele Variablen auf dem Stack							
0100 _h	Ungültige NanoJ Programmdatei							

Fehler bei dem Zugriff auf ein Objekt:

Nummer	Beschreibung
1xxxxyy _h	Ungültiges Mapping in der NanoJ-Programmdatei: Der Wert in "xxxx" benennt den Index, der Wert in "yy" den Subindex des Objekts, das gemappt werden soll aber nicht gemappt werden kann.
1000 _h	Zugriff auf ein nicht existierendes Objekt im Objektverzeichnis
1001 _h	Schreibzugriff auf schreibgeschützten Eintrag im OD
1002 _h	Interner Dateisystemfehler

Dateisystem Fehlercodes beim Laden des Benutzerprogramms:

Nummer	Beschreibung
10002 _h	Interner Dateisystemfehler
10003 _h	Speichermedium nicht bereit
10004 _h	Datei nicht gefunden
10005 _h	Ordner nicht gefunden
10006 _h	Ungültiger Dateiname/Ordnername
10008 _h	Zugriff auf Datei nicht möglich
10009 _h	Datei/Verzeichnis Objekt ist ungültig
1000A _h	Speicherrmedium ist schreibgeschützt
1000B _h	Laufwerksnummer ist ungültig
1000C _h	Arbeitsbereich des Laufwerks ist ungültig
1000D _h	Kein gültiges Dateisystem auf dem Laufwerk
1000E _h	Erstellung des Dateisystems ist fehlgeschlagen
1000F _h	Zugriff innerhalb der geforderten Zeit nicht möglich
10010 _h	Zugriff wurde zurückgewiesen

230Fh Uptime Seconds

Funktion

Dieses Objekt enthält die Betriebszeit seit dem letzen Start der Steuerung in Sekunden.

Hinweis

Dieses Objekt wird nicht gespeichert, die Zählung beginnt nach dem Einschalten wieder mit "0".

Objektbeschreibung

Index	220E.
	230F _h
	11

Objektname Uptime Seconds
Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar nein

Zugriff nur lesen

PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1436

Änderungshistorie

2310h NanoJ Input Data Selection

Funktion

Beschreibt die Object Dictionary-Einträge, die in das Input PDO-Mapping des NanoJ-Programms kopiert werden.

Objektbeschreibung

Index 2310_h

Objektname NanoJ Input Data Selection

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar nein

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1650-B472161

Änderungshistorie Firmware Version FIR-v1436: Eintrag "Object Name" geändert von

"VMM Input Data Selection" auf "NanoJ Input Data Selection".

Firmware Version FIR-v1650-B472161: Eintrag "Speicherbar"

geändert von "ja, Kategorie: Applikation" auf "nein".

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei

Subindex 00 geändert von "lesen/schreiben" auf "nur lesen".

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei

Subindex 01 geändert von "lesen/schreiben" auf "nur lesen".

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

198

Vorgabewert	10 _h							
Subindex	01 _h - 10 _h							
Name	Mapping #1 - #16							
Datentyp	UNSIGNED32							
Zugriff	nur lesen							
PDO-Mapping	nein							
Zulässige Werte								
Vorgabewert	0000000 _h							

Beschreibung

Jeder Subindex (1-16) beschreibt jeweils ein gemapptes Objekt.

Ein Mapping-Eintrag besteht aus vier Bytes, die sich nach folgender Grafik zusammen setzen.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Inde	x [16]							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SubIndex [8]										Leng	th [8]			

Index [16]

Darin ist der Index des zu mappenden Objektes enthalten

Subindex [8]

Darin ist der Subindex des zu mappenden Objektes enthalten

Length [8]

Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

2320h NanoJ Output Data Selection

Funktion

Beschreibt die Object Dictionary-Einträge, die in das Output PDO-Mapping des *NanoJ-Programms* kopiert werden, nachdem es ausgeführt worden ist.

Objektbeschreibung

Firmware Version

Index	2320 _h
Objektname	NanoJ Output Data Selection
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	nein
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	

Version: 1.0.0 / FIR-v1748

FIR-v1650-B472161

Änderungshistorie	Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "VMM Output Data Selection" auf "NanoJ Output Data Selection".
	Firmware Version FIR-v1650-B472161: Eintrag "Speicherbar" geändert von "ja, Kategorie: Applikation" auf "nein".
	Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 00 geändert von "lesen/schreiben" auf "nur lesen".
	Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 01 geändert von "lesen/schreiben" auf "nur lesen".

Wertebeschreibung

Subindex	00 _h							
Name	Highest Sub-index Supported							
Datentyp	UNSIGNED8							
Zugriff nur lesen								
PDO-Mapping nein								
Zulässige Werte								
Vorgabewert	10 _h							
Subindex	01 _h - 10 _h							
Name	Mapping #1 - #16							
Datentyp	UNSIGNED32							
Zugriff	nur lesen							
PDO-Mapping	nein							
Zulässige Werte								
Vorgabewert	00000000 _h							

Beschreibung

Jeder Subindex (1-16) beschreibt jeweils ein gemapptes Objekt.

Ein Mapping Eintrag besteht aus vier Byte welche sich nach nachfolgender Grafik zusammen setzen.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Index [16]														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SubIndex [8]									Leng	th [8]				

Index [16]

Darin ist der Index des zu mappenden Objektes enthalten

Subindex [8]

Darin ist der Subindex des zu mappenden Objektes enthalten

Length [8]

Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

2330h NanoJ In/output Data Selection

Funktion

Beschreibt die Object Dictionary-Einträge, die zunächst in das Input PDO-Mapping des NanoJ-Programms kopiert und nach dessen Ausführung wieder in das Output PDO-Mapping zurückkopiert werden.

Objektbeschreibung

Index 2330_h

Objektname NanoJ In/output Data Selection

Object Code **ARRAY**

Datentyp **UNSIGNED32**

Speicherbar nein

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1650-B472161

Änderungshistorie Firmware Version FIR-v1436: Eintrag "Object Name" geändert von

"VMM In/output Data Selection" auf "NanoJ In/output Data Selection".

Firmware Version FIR-v1650-B472161: Eintrag "Speicherbar"

geändert von "ja, Kategorie: Applikation" auf "nein".

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei

Subindex 00 geändert von "lesen/schreiben" auf "nur lesen".

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei

Subindex 01 geändert von "lesen/schreiben" auf "nur lesen".

Wertebeschreibung

Subindex

Highest Sub-index Supported Name

UNSIGNED8 Datentyp Zugriff nur lesen **PDO-Mapping** nein

Zulässige Werte

Vorgabewert 10_h

Subindex 01_h - 10_h

Name Mapping #1 - #16 Datentyp **UNSIGNED32** Zugriff nur lesen **PDO-Mapping** nein

Zulässige Werte

Vorgabewert 0000000_h

Beschreibung

Jeder Subindex (1-16) beschreibt jeweils ein gemapptes Objekt.

Ein Mapping-Eintrag besteht aus vier Bytes, die sich nach folgender Grafik zusammen setzen.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Inde	x [16]							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SubIndex [8]								Leng	th [8]						

Index [16]

Darin ist der Index des zu mappenden Objektes enthalten

Subindex [8]

Darin ist der Subindex des zu mappenden Objektes enthalten

Length [8]

Darin ist die Länge des zu mappenden Objektes in der Einheit Bit enthalten.

2400h NanoJ Inputs

Funktion

Hier befindet sich ein Array mit 32 32-Bit Integerwerten, das innerhalb der Firmware nicht verwendet wird und ausschließlich zur Kommunikation mit dem Benutzerprogramm über den Feldbus dient.

Objektbeschreibung

Index	2400 _h
Objektname	NanoJ Inputs
Object Code	ARRAY
Datentyp	INTEGER32
Speicherbar	nein
Firmware Version	FIR-v1426
Änderungshistorie	Die Anzahl der Einträge haben sich geändert von 2 auf 33
	Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "VMM Inputs" auf "NanoJ Inputs".
	Firmware Version FIR-v1436: Eintrag "Name" geändert von "VMM Input N#" auf "NanoJ Input N#".

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	20 _h

Subindex $01_h - 20_h$

Name NanoJ Input #1 - #32

Datentyp INTEGER32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Hier können dem NanoJ-Programm z. B. Vorgabewerte übergeben werden.

2410h NanoJ Init Parameters

Funktion

Dieses Objekt funktioniert identisch dem Objekt ${\bf 2400}_h$ mit dem Unterschied, dass dieses Objekt gespeichert werden kann.

Objektbeschreibung

Index 2410_h

Objektname NanoJ Init Parameters

Object Code ARRAY
Datentyp INTEGER32

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1450

Änderungshistorie Firmware Version FIR-v1450: Eintrag "Data type" geändert von

"INTEGER32" auf "UNSIGNED8".

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 20_h

Subindex 01_h - 20_h

Name NanoJ Init Parameter #1 - #32

Datentyp INTEGER32
Zugriff lesen/schreiben

PDO-Mapping

Zulässige Werte

Vorgabewert

00000000_h

RX-PDO

2500h NanoJ Outputs

Funktion

Hier befindet sich ein Array mit 32 32-Bit Integerwerten, das innerhalb der Firmware nicht verwendet wird und ausschließlich zur Kommunikation mit dem Benutzerprogramm über den Feldbus dient.

Objektbeschreibung

Index 2500_h Objektname NanoJ Outputs Object Code **ARRAY INTEGER32** Datentyp Speicherbar nein Firmware Version FIR-v1426 Änderungshistorie Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "VMM Outputs" auf "NanoJ Outputs". Firmware Version FIR-v1436: Eintrag "Name" geändert von "VMM Output N#" auf "NanoJ Output N#".

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte

Vorgabewert 20_h

 $\begin{array}{lll} \text{Subindex} & & \text{01}_{\text{h}} \text{ - 20}_{\text{h}} \\ \text{Name} & & \text{NanoJ Output #1 - #32} \end{array}$

Datentyp INTEGER32
Zugriff lesen/schreiben
PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Hier kann das *NanoJ-Programm* Ergebnisse ablegen, die dann über den Feldbus ausgelesen werden können.

2600h NanoJ Debug Output

Funktion

Dieses Objekt enthält Debug-Ausgaben eines Benutzerprogramms.

 00_{h}

Objektbeschreibung

Index	2600 _h
Objektname	NanoJ Debug Output
Object Code	ARRAY
Datentyp	UNSIGNED8
Speicherbar	nein
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1436: Eintrag "Object Name" geändert von "VMM Debug Output" auf "NanoJ Debug Output".

Wertebeschreibung

Subindex

Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00 _h
0.1: 1	04 40
Subindex	01 _h - 40 _h
Name	Value #1 - #64
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
	110111
Zulässige Werte	

Beschreibung

Hier legt das NanoJ-Programm die Debug-Ausgaben ab, welche mit der Funktion VmmDebugOutputString(), VmmDebugOutputInt() und dergleichen aufgerufen wurden.

2701h Customer Storage Area

Funktion

In dieses Objekt können Daten abgelegt und gespeichert werden.

Objektbeschreibung

Index 2701_h

Objektname Customer Storage Area

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Benutzer

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1540

Änderungshistorie Firmware Version FIR-v1540: Eintrag "Data type" geändert von

"UNSIGNED32" auf "UNSIGNED8".

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert FE_h

Subindex 01_h - FE_h

Name Storage #1 - #254
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

2800h Bootloader And Reboot Settings

Funktion

Mit diesem Objekt lässt sich ein Reboot der Firmware auslösen und das Kurzschließen der Motorwicklungen im Bootloader-Modus aus- und einschalten.

Objektbeschreibung

Index 2800_h

Objektname Bootloader And Reboot Settings

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1540

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 03_h

Subindex 01_h

Name Reboot Command
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 02_h

Name Reboot Delay Time In Ms

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 03_h

Name Bootloader HW Config

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Die Subindizes haben folgende Funktion:

- 01_h: Wird hier der Wert "746F6F62_h" eingetragen, wird die Firmware rebootet.
- 02_h: Zeit in Millisekunden: verzögert den Reboot der Firmware um die jeweilige Zeit.
- 03_h: mit dem Bit 0 kann das Kurzschließen der Motorwicklungen im Bootloader-Modus aus- und eingeschaltet werden:
 - Bit 0= 1: Das Kurzschließen der Motorwicklungen im Bootloader-Modus wird ausgeschaltet.
 - Bit 0= 0: Das Kurzschließen der Motorwicklungen im Bootloader-Modus wird eingeschaltet.

3202h Motor Drive Submode Select

Funktion

Steuert die Reglerbetriebsart, wie z. B. die *Closed Loop/ Open Loop*-Umschaltung und ob der Velocity-Mode über den S-Regler simuliert wird oder mit einem echten V-Regler im *Closed Loop* arbeitet.

Objektbeschreibung

Index	3202 _h
Objektname	Motor Drive Submode Select
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Bewegung
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00000000 _h
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1540: Eintrag "Saveable" geändert von "ja, Kategorie: Applikation" auf "ja, Kategorie: Fahrt".
	Firmware Version FIR-v1540: Eintrag "Saveable" geändert von "ja, Kategorie: Fahrt" auf "ja, Kategorie: Bewegung".

Beschreibung

CL/OL

Umschaltung zwischen Open Loop und Closed Loop

• Wert = "0": Open Loop

• Wert = "1": Closed Loop

VoS

Wert = "1": V-Regler über eine S-Rampe simulieren: die Geschwindigkeitsmodi über kontinuierliche Positionsänderungen simulieren

Brake

Wert = "1": Einschalten der automatischen Bremsensteuerung.

CurRed (Current Reduction)

Wert = "1": Stromabsenkung im *Open Loop* aktiviert

Torque

nur in den Betriebsmodi Profile Torque und Cyclic Synchronous Torque aktiv

Wert = "1": M-Regler ist aktiv, andernfalls ist ein V-Regler überlagert: in den Torque-Modi wird kein V-Regler zur Geschwindigkeitsbegrenzung verwendet, das Objekt 6080_h wird also ignoriert, 3210_h :3 und 3210_h :4 haben keinen Einfluss auf die Regelung.

BLDC

Wert = "1": Motortyp "BLDC" (Bürstenloser Gleichstrommotor)

3203h Feedback Selection

Funktion

In diesem Objekt werden die Quellen der Vorgaben für die Kommutierung, Geschwindigkeits- und Positionsregelung festgelegt.

Objektbeschreibung

Index	3203 _h
Objektname	Feedback Selection
Object Code	ARRAY
Datentyp	UNSIGNED8
Speicherbar	ja, Kategorie: Bewegung
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1748-B533384
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	RX-PDO

–	
Zulässige Werte	
Vorgabewert	03 _h
Subindex	01 _h
Name	1st Feedback Interface
Datentyp	UNSIGNED8
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00 _h
Subindex	02 _h
Name	2nd Feedback Interface
Datentyp	UNSIGNED8
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00 _h
Subindex	03 _h
Name	3rd Feedback Interface
Datentyp	UNSIGNED8
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00 _h

Beschreibung

Die Subindizes haben folgende Funktion:

- 00h: Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- n_h

Subindex n enthält eine Bitmaske für die jeweilige Rückführung n. Die Bits haben dabei folgende Bedeutung:

- Bit 0: wird das Bit auf "1" gesetzt, wird die Rückführung n für die Positionsregelung verwendet.
- Bit 1: wird das Bit auf "1" gesetzt, wird die Rückführung n für die Geschwindigkeitsregelung verwendet.
- Bit 2: wird das Bit auf "1" gesetzt, wird die Rückführung n wird für die Kommutierung im Closed Loop verwendet.

Subindex 01_h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Welche Rückführung die Steuerung für die einzelnen Regler (Kommutierung, Geschwindigkeit, Position) berücksichtigt, ist implizit durch die Reihenfolge der Rückführungen vorgegeben.

Das Aufsuchen beginnt immer mit Rückführung 2 und setzt sich aufsteigend fort, bis alle produktspezifisch vorhandenen Rückführungen abgefragt wurden. Wird eine Rückführung gefunden deren Parametrierung gesetzt ist, dann wird diese dem entsprechenden Regler zugeordnet und die Suche abgebrochen.

Hinweis

Wird das Bit 0 in 3202_h auf 0 gesetzt, ist der *Closed Loop* deaktiviert und somit hat das Bit 2 (Kommutierung) keine Bedeutung. Das Bit 1 für die Geschwindigkeit und das Bit 0 für die Position in den jeweiligen Subindizes werden weiterhin für die Anzeige der Positions- und Geschwindigkeits-Ist-Werten herangezogen.

3204h Feedback Mapping

Funktion

Das Objekt enthält Informationen zu den vorhandenen Rückführungen.

Objektbeschreibung

Index 3204_h

Objektname Feedback Mapping

Object Code ARRAY

Datentyp UNSIGNED16

Speicherbar nein

Zugriff nur lesen

PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1748-B533384

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 03_h

Subindex 01_h

Name Index Of 1st Feedback Interface

Datentyp UNSIGNED16
Zugriff nur lesen
PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 3380_h

Subindex 02_h

Name Index Of 2nd Feedback Interface

Datentyp UNSIGNED16
Zugriff nur lesen
PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 3390_h

Subindex 03_h

Name Index Of 3rd Feedback Interface

Datentyp UNSIGNED16
Zugriff nur lesen
PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 33A0_h

Beschreibung

Die Subindizes haben folgende Funktion:

00h: Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.

• n_h:

Subindex n verweist auf den Index des zugehörigen Objekts für die Konfiguration der entsprechenden Rückführung.

Subindex 01_h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

3210h Motor Drive Parameter Set

Funktion

Beinhaltet die P- und I-Anteile der Strom-, Geschwindigkeits- und Positionsregler für *Open Loop* (nur Stromregler aktiviert) und *Closed Loop*.

Objektbeschreibung

Index 3210_h

Objektname Motor Drive Parameter Set

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1626: Eintrag "Name" geändert von "S_P" auf

"Position Loop, Proportional Gain (closed Loop)".

Firmware Version FIR-v1626: Eintrag "Name" geändert von "S I" auf

"Position Loop, Integral Gain (closed Loop)".

Firmware Version FIR-v1626: Eintrag "Name" geändert von "V_P" auf "Velocity Loop, Proportional Gain (closed Loop)".

Firmware Version FIR-v1626: Eintrag "Name" geändert von "V_I" auf "Velocity Loop, Integral Gain (closed Loop)".

Firmware Version FIR-v1626: Eintrag "Name" geändert von "Id_P" auf "Flux Current Loop, Proportional Gain (closed Loop)".

Firmware Version FIR-v1626: Eintrag "Name" geändert von "Id_I" auf "Flux Current Loop, Integral Gain (closed Loop)".

Firmware Version FIR-v1626: Eintrag "Name" geändert von "Iq_P" auf "Torque Current Loop, Proportional Gain (closed Loop)".

Firmware Version FIR-v1626: Eintrag "Name" geändert von "Iq_I" auf "Torque Current Loop, Integral Gain (closed Loop)".

Firmware Version FIR-v1626: Eintrag "Name" geändert von "I_P" auf "Torque Current Loop, Proportional Gain (dspDrive - Stepper Motor, Open Loop)".

Firmware Version FIR-v1626: Eintrag "Name" geändert von "I_I" auf "Torque Current Loop, Integral Gain (dspDrive - Stepper Motor, Open Loop)".

Firmware Version FIR-v1650-B472161: Eintrag "Name" geändert von "Torque Current Loop, Proportional Gain (dspDrive - Stepper Motor, Open Loop)" auf "Torque Current Loop, Proportional Gain (open Loop)".

Firmware Version FIR-v1650-B472161: Eintrag "Name" geändert von "Torque Current Loop, Integral Gain (dspDrive - Stepper Motor, Open Loop)" auf "Torque Current Loop, Integral Gain (open Loop)".

Firmware Version FIR-v1650-B472161: Eintrag "Datentyp" geändert von "INTEGER32" auf "UNSIGNED32".

Firmware Version FIR-v1650-B472161: Eintrag "Data type" geändert von "INTEGER32" auf "UNSIGNED32".

Firmware Version FIR-v1738-B501312: Die Anzahl der Einträge haben sich geändert von 11 auf 13.

Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-Mapping" bei Subindex 00 bis 0A geändert von "nein" auf "RX-PDO".

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	0C _h

Subindex 01_h

Name Position Loop, Proportional Gain (closed Loop)

Datentyp UNSIGNED32

Zugriff lesen/schreiben **RX-PDO PDO-Mapping** Zulässige Werte Vorgabewert 00000800_h Subindex 02_h Name Position Loop, Integral Gain (closed Loop) Datentyp **UNSIGNED32** Zugriff lesen/schreiben **PDO-Mapping** RX-PDO Zulässige Werte Vorgabewert 0000000_h Subindex 03_h Name Velocity Loop, Proportional Gain (closed Loop) **UNSIGNED32** Datentyp Zugriff lesen/schreiben **PDO-Mapping RX-PDO** Zulässige Werte Vorgabewert $00002EE0_h$ Subindex Name Velocity Loop, Integral Gain (closed Loop) **UNSIGNED32** Datentyp Zugriff lesen/schreiben **PDO-Mapping RX-PDO** Zulässige Werte Vorgabewert 0000001E_h Subindex 05_{h}

Name	Flux Current Loop, Proportional Gain (closed Loop)
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	000668A0 _h

Subindex 06_h

Name Flux Current Loop, Integral Gain (closed Loop)

Datentyp **UNSIGNED32** Zugriff lesen/schreiben **RX-PDO**

PDO-Mapping Zulässige Werte

214

Vorgabewert	00002EE0 _h
Subindex	07 _h
Name	Torque Current Loop, Proportional Gain (closed Loop)
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	000668A0 _h
0.1:1:	
Subindex	08 _h
Name	Torque Current Loop, Integral Gain (closed Loop)
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	00000550
Vorgabewert	00002EE0 _h
Subindex	09 _h
Name	Torque Current Loop, Proportional Gain (open Loop)
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	0003A980 _h
Subindex	OA_h
Name	Torque Current Loop, Integral Gain (open Loop)
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	TOTAL DE
Vorgabewert	0000AFC8 _h
Subindex	0B _h
Name	Velocity Feed Forward Factor In Per Mille
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	000003E8 _h
Subindex	${\sf OC_h}$
Capillaex	oo _h

Name Acceleration Feed Forward Factor

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

- Subindex 00_h: Anzahl der Einträge
- Subindex 01_h: Proportionalanteil des S-Reglers (Position)
- Subindex 02_h: Integralanteil des S-Reglers (Position)
- Subindex 03_h: Proportionalanteil des V-Reglers (Geschwindigkeit)
- Subindex 04_h: Integralanteil des V-Reglers (Geschwindigkeit)
- Subindex 05_h: (Closed Loop) Proportionalanteil des Stromreglers der feldbildenden Komponente
- Subindex 06_h: (Closed Loop) Integralanteil des Stromreglers der feldbildenden Komponente
- Subindex 07_h: (Closed Loop) Proportionalanteil des Stromreglers der momentbildenden Komponente
- Subindex 08_h: (Closed Loop) Integralanteil des Stromreglers der momentbildenden Komponente
- Subindex 09_n: (Open Loop) Proportionalteil des Stromreglers der feldbildenden Komponente
- Subindex 0A_n: (Open Loop) Integralanteil des Stromreglers der feldbildenden Komponente
- Subindex 0B_h: (Closed Loop) Geschwindigkeitsvorsteuerung in Promille. Default ist 1000 und damit ein Faktor von 1.
- Subindex 0C_h: (Closed Loop) Beschleunigungsvorsteuerung. Default ist 0 (Vorsteuerung inaktiv). Ist auch beim Verzögern wirksam.

3212h Motor Drive Flags

Funktion

Mit diesem Objekt wird bestimmt, ob das **Auto-Setup** die Regler-Parameter anpassen soll, oder nicht. Zudem kann die Richtung des Drehfeldes geändert werden.

Hinweis

Änderungen im Subindex 02_h werden erst nach einem Neustart der Steueung aktiv. Das **Auto-Setup** muss danach erneut durchgeführt werden.

Objektbeschreibung

Index 3212_h

Objektname Motor Drive Flags

Object Code ARRAY
Datentyp INTEGER8

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1450

Änderungshistorie Firmware Version FIR-v1512: Die Anzahl der Einträge haben sich

geändert von 2 auf 3.

Firmware Version FIR-v1738-B501312: Eintrag "Name" geändert von

"Enable Legacy Power Mode" auf "Reserved".

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 03_h

Subindex 01_h
Name Reserved
Datentyp INTEGER8
Zugriff lesen/schreiben

PDO-Mapping

Zulässige Werte

Vorgabewert 00_h

Subindex 02_h

Name Override Field Inversion

nein

Datentyp INTEGER8
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00_h

Subindex 03_h

Name Do Not Touch Controller Settings

Datentyp INTEGER8

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00_h

Beschreibung

Für den Subindex 02_h gültige Werte:

- Wert = "0": Default-Werte der Firmware benutzen
- Wert = "1": nicht Invertieren des Drehfeldes erzwingen (mathematisch positiv)

• Wert = "-1": Invertieren des Drehfeldes erzwingen (mathematisch negativ)

Für den Subindex 03_h gültige Werte:

- Wert = "0": **Auto-Setup** erkennt den Motortyp (Schrittmotor oder BLDC-Motor) und verwendet den entsprechenden vorkonfigurierten Parametersatz.
- Wert = "1": **Auto-Setup** mit den Werten für den Regler durchführen, die vor dem Auto-Setup im Objekt **3210**_h eingetragen wurden, die Werte in **3210**_h werden nicht geändert.

3220h Analog Inputs

Funktion

Zeigt die Momentanwerte der Analogeingänge in Digits an.

Durch Objekt **3221**_h kann der jeweilige Analogeingang als Strom- oder Spannungseingang konfiguriert werden.

Objektbeschreibung

Index	3220 _h
Objektname	Analog Inputs
Object Code	ARRAY
Datentyp	INTEGER16
Speicherbar	nein
Firmware Version	FIR-v1426
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	02 _h
Subindex	01 _h
Name	Analogue Input 1
Datentyp	INTEGER16
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000 _h
Subindex	02 _h
Name	Analogue Input 2
Datentyp	INTEGER16

Zugriff nur lesen PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 0000_h

Beschreibung

Formeln zum Umrechnen von [digits] in die jeweilige Einheit:

- Spannungseingang: (x digits 512 digits) * 20 V / 1024 digits
- Stromeingang: x digits * 20 mA / 1024 digits

3221h Analogue Inputs Control

Funktion

Mit diesem Objekt lässt sich ein Analog-Eingang von Spannungs- auf Strommessung umschalten.

Objektbeschreibung

Index	3221 _h
Objektname	Analogue Inputs Control
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h
Firmware Version	FIR-v1426
Änderungshistorie	

Beschreibung

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
										•					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														AC2	AC1

Generell gilt: Wird ein Bit auf den Wert"0" gesetzt, misst der Analogeingang die Spannung, ist das Bit auf den Wert "1" gesetzt, wird der Strom gemessen.

AC1

Einstellung für Analogeingang 1

AC2

Einstellung für Analogeingang 2

3225h Analogue Inputs Switches

Funktion

Dieses Objekt enthält den Wert des Drehschalters, der für die Konfiguration der Adresse der Steuerung verwendet wird . Die Schalter-Position wird nur beim Neustart einmalig ausgelesen.

Objektbeschreibung

Index	3225 _h
Objektname	Analogue Inputs Switches
Object Code	ARRAY
Datentyp	UNSIGNED16
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1436
Änderungshistorie	Firmware Version FIR-v1436: Tabellen-Eintrag "PDO-Mapping" bei Subindex 01 geändert von "RX-PDO" auf "TX-PDO".

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	01 _h
Subindex	01 _h
Name	Analogue Input Switch1
Datentyp	UNSIGNED16
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000 _h

Beschreibung

Verfügt die Steuerung über einen Drehschalter, wird im Subindex 01_h der Wert des Drehschalters angezeigt. Verfügt die Steuerung über 2 Drehschalter, wird in dem Subindex 01h der Wert des Drehschalters angezeigt, der sich aus Schalter 1 und 2 zusammensetzt.

3240h Digital Inputs Control

Funktion

Mit diesem Objekt lassen sich digitale Eingänge manipulieren wie in Kapitel **Digitale Ein- und Ausgänge** beschrieben.

Objektbeschreibung

Index	3240 _h
Objektname	Digital Inputs Control
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1426: Subindex 01 _h : Eintrag "Name" geändert von "Special Function Disable" auf "Special Function Enable"
	Firmware Version FIR-v1512: Die Anzahl der Einträge haben sich geändert von 8 auf 9.

Wertebeschreibung

0.1: 1	00				
Subindex	00 _h				
Name	Highest Sub-index Supported				
Datentyp	UNSIGNED8				
Zugriff	nur lesen				
PDO-Mapping	nein				
Zulässige Werte					
Vorgabewert	08 _h				
Subindex	01 _h				
Name	Special Function Enable				
Datentyp	UNSIGNED32				
Zugriff	lesen/schreiben				
PDO-Mapping	RX-PDO				
Zulässige Werte					
Vorgabewert	0000000 _h				
Subindex	02 _h				
Name	Function Inverted				
Datentyp	UNSIGNED32				
Zugriff	lesen/schreiben				
PDO-Mapping	RX-PDO				
Zulässige Werte					
Vorgabewert	00000000 _h				

Subindex	03 _h				
Name	Force Enable				
Datentyp	UNSIGNED32				
Zugriff	lesen/schreiben				
PDO-Mapping	RX-PDO				
Zulässige Werte					
Vorgabewert	00000000 _h				
Subindex	04 _h				
Name	Force Value				
Datentyp	UNSIGNED32				
Zugriff	lesen/schreiben				
PDO-Mapping	RX-PDO				
Zulässige Werte					
Vorgabewert	00000000 _h				
Subindex					
Name	Raw Value				
Datentyp	UNSIGNED32				
Zugriff	lesen/schreiben				
PDO-Mapping	RX-PDO				
Zulässige Werte					
Vorgabewert	00000000 _h				
Subindex	06 _h				
Name	Input Range Select				
Datentyp	UNSIGNED32				
Zugriff	lesen/schreiben				
PDO-Mapping	RX-PDO				
Zulässige Werte					
Vorgabewert	00000000 _h				
Subindex	07 _h				
Name	Differential Select				
Datentyp	UNSIGNED32				
Zugriff	lesen/schreiben				
PDO-Mapping	RX-PDO				
Zulässige Werte					
Vorgabewert	00000000 _h				
0.1:-1:					
Subindex	08 _h				
Name	Routing Enable				
Datentyp	UNSIGNED32				

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Die Subindizes haben folgende Funktion:

- 3240_h:01_h (Special Function Enable): Dieses Bit erlaubt Sonderfunktionen eines Eingangs aus(Wert "0") oder einzuschalten (Wert "1"). Soll Eingang 1 z.B. nicht als negativer Endschalter
 verwendet werden, so muss die Sonderfunktion abgeschaltet werden, damit nicht fälschlicherweise
 auf den Signalgeber reagiert wird. Auf die Bits 16 bis 31 hat das Objekt keine Auswirkungen.
 Die Firmware wertet folgende Bits aus:
 - · Bit 0: Negativer Endschalter
 - · Bit 1: Positiver Endschalter
 - Bit 2: Referenzschalter

Sollen z.B. zwei Endschalter und ein Referenzschalter verwendet werden, müssen Bits 0-2 in **3240**_h:01_h auf "1" gesetzt werden

- 3240_h:02_h (Function Inverted): Dieser Subindex wechselt von Schließer-Logik (ein logischer High-Pegel am Eingang ergibt den Wert "1" im Objekt 60FD_h) auf Öffner-Logik (der logische High-Pegel am Eingang ergibt den Wert "0").
 - Das gilt für die Sonderfunktionen (außer den Takt- und Richtungseingängen) und für die normalen Eingänge. Hat das Bit den Wert "0" gilt Schließer-Logik, entsprechend bei dem Wert "1" die Öffner-Logik. Bit 0 wechselt die Logik des Eingangs 1, Bit 1 die Logik des Eingangs 2 usw.
- 3240_h:03_h (Force Enable): Dieser Subindex schaltet die Softwaresimulation von Eingangswerten ein, wenn das entsprechende Bit auf "1" gesetzt ist.
 Dann werden nicht mehr die tatsächlichen, sondern die in Objekt 3240_h:04_h eingestellten Werte für den jeweiligen Eingang verwendet. Bit 0 entspricht dabei dem Eingang 1, Bit 1 dem Eingang 2 usw..
- **3240**_h:04_h (Force Value): Dieses Bit gibt den Wert vor, der als Eingangswert eingelesen werden soll, wenn das gleiche Bit im Objekt **3240**_h:03_h gesetzt wurde.
- 3240_h:05_h (Raw Value): Dieses Objekt beinhaltet den unmodifizierten Eingabewert.
- 3240_h:06_h (Input Range Select): Damit können Eingänge welche über diese Funktion verfügen von der Schaltschwelle von 5 V (Bit auf "0") auf die Schaltschwelle 24 V (Bit auf "1") umgeschalten werden. Bit 0 entspricht dabei dem Eingang 1, Bit 1 dem Eingang 2 usw..

3242h Digital Input Routing

Funktion

Dieses Objekt bestimmt die Quelle des Inputroutings, die im 60FD_h endet.

Objektbeschreibung

Index 3242_h

Objektname Digital Input Routing

Object Code ARRAY
Datentyp UNSIGNED8

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte

Vorgabewert	
Firmware Version	FIR-v1504

Wertebeschreibung

Änderungshistorie

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	24 _h
Subindex	01 _h - 24 _h
Name	Input Source #1 - #36
Datentyp	UNSIGNED8
Zugriff	lesen/schreiben
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	00 _h

Beschreibung

Der Subindex 01_h enthält die Quelle für das Bit 0 des Objekts **60FD**. Der Subindex 02_h enthält die Quelle für das Bit 1 des Objekts **60FD** und so weiter.

Die Nummer, die in eine Subindex geschrieben wird, bestimmt die Quelle für das zugehörige Bit. Die folgende Tabelle listet alle möglichen Signalquellen auf.

Numme	er	
dec	hex	Signalquelle
00	00	Signal ist immer 0
01	01	Physikalischer Eingang 1
02	02	Physikalischer Eingang 2
03	03	Physikalischer Eingang 3
04	04	Physikalischer Eingang 4
05	05	Physikalischer Eingang 5
06	06	Physikalischer Eingang 6
07	07	Physikalischer Eingang 7
80	08	Physikalischer Eingang 8
09	09	Physikalischer Eingang 9
10	0A	Physikalischer Eingang 10
11	0B	Physikalischer Eingang 11
12	0C	Physikalischer Eingang 12
13	0D	Physikalischer Eingang 13
14	0E	Physikalischer Eingang 14

Numme	r	
dec	hex	Signalquelle
15	0F	Physikalischer Eingang 15
16	10	Physikalischer Eingang 16
65	41	Hall Eingang "U"
66	42	Hall Eingang "V"
67	43	Hall Eingang "W"
68	44	Encoder Eingang "A"
69	45	Encoder Eingang "B"
70	46	Encoder Eingang "Index"
72	48	Status "Ethernet aktiv"
128	80	Signal ist immer 1
129	81	Invertierter physikalischer Eingang 1
130	82	Invertierter physikalischer Eingang 2
131	83	Invertierter physikalischer Eingang 3
132	84	Invertierter physikalischer Eingang 4
133	85	Invertierter physikalischer Eingang 5
134	86	Invertierter physikalischer Eingang 6
135	87	Invertierter physikalischer Eingang 7
136	88	Invertierter physikalischer Eingang 8
137	89	Invertierter physikalischer Eingang 9
138	8A	Invertierter physikalischer Eingang 10
139	8B	Invertierter physikalischer Eingang 11
140	8C	Invertierter physikalischer Eingang 12
141	8D	Invertierter physikalischer Eingang 13
142	8E	Invertierter physikalischer Eingang 14
143	8F	Invertierter physikalischer Eingang 15
144	90	Invertierter physikalischer Eingang 16
193	C1	Invertierter Hall Eingang "U"
194	C2	Invertierter Hall Eingang "V"
195	C3	Invertierter Hall Eingang "W"
196	C4	Invertierter Encoder Eingang "A"
197	C5	Invertierter Encoder Eingang "B"
198	C6	Invertierter Encoder Eingang "Index"
200	C8	Invertierter Status "Ethernet aktiv"

3243h Digital Input Homing Capture

Funktion

Mit diesem Objekt kann automatisch die Encoderposition notiert werden, wenn am digitalen Eingang, der für den Referenzschalter verwendet wird, ein Pegelwechsel stattfindet.

Objektbeschreibung

Index	3243 _h
Objektname	Digital Input Homing Capture

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1738-B501312

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 04_h

Subindex 01_h
Name Control

Datentyp UNSIGNED32 Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Subindex 02_h

Name Capture Count
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Subindex 03_h
Name Value

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Subindex 04_{h}

Name Sensor Raw Value **UNSIGNED32** Datentyp Zugriff lesen/schreiben RX-PDO

PDO-Mapping

Zulässige Werte

Vorgabewert 0000000_h

Beschreibung

Subindex 01_h: damit wird der Typ des Pegelwechsels ausgewählt:

Funktion deaktivieren: Wert "0" • Mit steigender Flanke: Wert "1" Mit fallender Flanke: Wert "2"

• Beide Flanken: Wert "3"

- Subindex 02_h: gibt die Anzahl der notierten Pegelwechsel seit dem letzten Start der Funktion wieder; wird auf 0 zurückgesetzt, wenn Subindex 01_h auf 1,2 oder 3 gesetzt wird
- Subindex 03_h: Encoder Position des Pegelwechsels (in absoluten Benutzereinheiten aus 6064_h)
- Subindex 04_h: Encoder Position des Pegelwechsels

3250h Digital Outputs Control

Funktion

Mit diesem Objekt lassen sich die digitalen Ausgänge steuern, wie in Kapitel " Digitale Ein- und Ausgänge" beschrieben.

Dabei gilt für alle Subindizes:

- Bit 0 bis 15 steuern die Spezialfunktionen.
- Bit 16 bis 31 steuern die Pegel der Ausgänge.

Objektbeschreibung

Index 3250_h Objektname **Digital Outputs Control** Object Code **ARRAY** Datentyp **UNSIGNED32**

Speicherbar ja, Kategorie: Applikation

Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1426: Subindex 01h: Eintrag "Name" geändert

von "Special Function Disable" auf "Special Function Enable"

Firmware Version FIR-v1446: Eintrag "Name" geändert von "Special

Function Enable" auf "No Function".

Firmware Version FIR-v1512: Die Anzahl der Einträge haben sich

geändert von 6 auf 9.

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	08 _h
Subindex	01 _h
Name	No Function
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	02 _h
Name	Function Inverted
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00000000 _h
Subindex	03 _h
Name	Force Enable
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00000000 _h
Subindex	04 _h
Name	Force Value
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	05 _h

Name	Raw Value	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	00000000 _h	
Subindex	06 _h	
Name	Reserved1	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	00000000 _h	
Subindex	07 _h	
Name	Reserved2	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	00000000 _h	
Subindex	08 _h	
Name	Routing Enable	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		

Beschreibung

Vorgabewert

Die Subindizes haben folgende Funktion:

- 01_h: Ohne Funktion.
- 02h: Mit diesem Subindex wird die Logik invertiert (von Öffner-Logik auf Schließer-Logik).

0000000_h

- 03h: Mit diesem Subindex wird der Ausgangswert erzwungen, wenn das Bit den Wert "1" hat. Der Pegel des Ausganges wird in Subindex 4h festgelegt.
- 04h: Mit diesem Subindex wird der am Ausgang anzulegende Pegel definiert. Der Wert "0" liefert am digitalen Ausgang einen logischen Low-Pegel, der Wert "1" entsprechend einen logischen High-Pegel.
- 05_h: In diesem dem Subindex wird die an die Ausgänge gelegte Bitkombination abgelegt.

3252h Digital Output Routing

Funktion

Dieses Objekt weist einem Ausgang eine Signalquelle zu, die mit dem 60FE_h kontrolliert werden kann.

Objektbeschreibung

Index 3252_{h} Objektname **Digital Output Routing** Object Code **ARRAY UNSIGNED16** Datentyp Speicherbar ja, Kategorie: Applikation Zugriff nur lesen PDO-Mapping nein Zulässige Werte Vorgabewert Firmware Version FIR-v1748-B538662 Änderungshistorie

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	05 _h
Subindex	01 _h
Name	Output Control #1
Datentyp	UNSIGNED16
Zugriff	lesen/schreiben
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	1080 _h
Subindex	02 _h
Name	Output Control #2
Datentyp	UNSIGNED16
Zugriff	lesen/schreiben
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0090 _h

Subindex	03 _h	
Name	Output Control #3	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	TX-PDO	
Zulässige Werte		
Vorgabewert	0091 _h	
Subindex	04 _h	
Name	Output Control #4	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	TX-PDO	
Zulässige Werte		
Vorgabewert	0092 _h	
Subindex	05 _h	
Name	Output Control #5	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	TX-PDO	
Zulässige Werte		

3320h Read Analogue Input

Funktion

Zeigt die Momentanwerte der Analogeingänge in benutzerdefinierten Einheiten an.

 0093_{h}

Objektbeschreibung

Vorgabewert

Index	3320 _h
Objektname	Read Analogue Input
Object Code	ARRAY
Datentyp	INTEGER32
Speicherbar	nein
Firmware Version	FIR-v1426
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h	
Name	Number Of Analogue Inputs	
Datentyp	UNSIGNED8	

Zugriff	nur lesen
PDO-Mapping	nein

Zulässige Werte

Vorgabewert 02_h

Subindex	01 _h	
Name	Analogue Input 1	
Datentyp	INTEGER32	
Zugriff	nur lesen	
PDO-Mapping	TX-PDO	
Zulässige Werte		
Vorgabewert	0000000 _h	
Subindex	02 _h	

Subindex	02 _h	
Name	Analogue Input 2	
Datentyp	INTEGER32	
Zugriff	nur lesen	
PDO-Mapping	TX-PDO	
Zulässige Werte		
Vorgabewert	0000000 _h	

Beschreibung

Die benutzerdefinierten Einheiten setzten sich aus Offset (3321_h) und Pre-scaling Wert (3322_h) zusammen. Sind beide Objekteinträge noch mit Default-Werten beschrieben, wird der Wert in 3320_h in der Einheit "ADC digits" angegeben.

Formel zum Umrechnen von digits in die jeweilige Einheit:

- Spannungseingang: (x digits 512 digits) * 20 V / 1024 digits
- Stromeingang: x digits * 20 mA / 1024 digits

Für die Subeinträge gilt:

- Subindex 00_h: Anzahl der Analogeingänge
- Subindex 01_h: Analogwert 1
- Subindex 02_h: Analogwert 2

3321h Analogue Input Offset

Funktion

Offset, der zum eingelesenen Analogwert (3320_h) addiert wird, bevor die Teilung mit dem Teiler aus dem Objekt 3322_h vorgenommen wird.

Objektbeschreibung

Index	3321 _h
Objektname	Analogue Input Offset
Object Code	ARRAY
Datentyp	INTEGER32

Speicherbar ja, Kategorie: Applikation

Firmware Version FIR-v1426

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Number Of Analogue Inputs

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 02_h

Subindex 01_h

Name Analogue Input 1
Datentyp INTEGER32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 02_h

Name Analogue Input 2
Datentyp INTEGER32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Subindex 00_h: Anzahl der Offsets

Subindex 01_h: Offset f
ür Analogeingang 1

Subindex 02_h: Offset für Analogeingang 2

3322h Analogue Input Pre-scaling

Funktion

Wert, mit dem der eingelesene Analogwert (3320_h, 3321_h) dividiert wird, bevor er in das Objekt 3320_h geschrieben wird.

Objektbeschreibung

Index	3322 _h

Objektname Analogue Input Pre-scaling

Object Code ARRAY
Datentyp INTEGER32

Speicherbar ja, Kategorie: Applikation

Firmware Version FIR-v1426

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Number Of Analogue Inputs

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 02_h

Subindex 01_h

Name Analogue Input 1
Datentyp INTEGER32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte alle Werte zulässig außer 0

Vorgabewert 00000001_h

Subindex 02_h

Name Analogue Input 2
Datentyp INTEGER32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte alle Werte zulässig außer 0

Vorgabewert 00000001_h

Beschreibung

Die Subindizes enthalten:

- Subindex 00_h: Anzahl der Teiler
- Subindex 01_h: Teiler für Analogeingang 1
- Subindex 02_h: Teiler für Analogeingang 2

3390h Feedback Hall

Funktion

Enthält Konfigurationswerte für die Hall-Sensoren. Die Werte werden vom Auto-Setup ermittelt.

Objektbeschreibung

3390_h Index

Objektname Feedback Hall

Object Code ARRAY

Datentyp **UNSIGNED16**

Speicherbar ja, Kategorie: Tuning

Zugriff nur lesen **PDO-Mapping RX-PDO**

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1748-B531667

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Highest Sub-index Supported Name

Datentyp **UNSIGNED8** Zugriff nur lesen **RX-PDO PDO-Mapping**

Zulässige Werte

Vorgabewert $0C_h$

Subindex 01_h

Name 1st Alignment **UNSIGNED16** Datentyp Zugriff lesen/schreiben **RX-PDO**

PDO-Mapping

Zulässige Werte

Vorgabewert 0000_{h}

Subindex 02_h

Name 2nd Alignment **UNSIGNED16** Datentyp Zugriff lesen/schreiben **PDO-Mapping** RX-PDO

Zulässige Werte

Vorgabewert 0000_{h}

Subindex 03_h

Name 3rd Alignment **UNSIGNED16** Datentyp Zugriff lesen/schreiben

PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	
Subindex	04 _h	
Name	4th Alignment	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	
Subindex	05 _h	
Name	5th Alignment	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	
Subindex	06 _h	
Name	6th Alignment	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	
Subindex	07 _h	
Name	7th Alignment	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	
Subindex	08 _h	
Name	8th Alignment	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	

Subindex	09 _h	
Name	9th Alignment	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	
Subindex	OA _h	
Name	10th Alignment	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	
Subindex	$0B_h$	
Name	11th Alignment	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	
Subindex	$0C_h$	
Name	12th Alignment	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	

33A0h Feedback Incremental A/B/I 1

Funktion

Enthält Konfigurationswerte für den ersten inkrementalen Encoder. Die Werte werden vom **Auto-Setup** ermittelt.

Objektbeschreibung

Index	33A0 _h	
Objektname	Feedback Incremental A/B/I 1	
Object Code	ARRAY	
Datentyp	UNSIGNED16	

Speicherbar ja, Kategorie: Tuning

Zugriff nur lesen PDO-Mapping RX-PDO

Zulässige Werte Vorgabewert

Firmware Version FIR-v1738-B501312

Änderungshistorie

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	02 _h

Subindex	01 _h	
Name	Configuration	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000 _h	

Subindex	02 _h
Name	Alignment
Datentyp	UNSIGNED16
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	0000 _h

Beschreibung

Die Subindizes haben folgende Funktion:

- 00_h (Configuration): folgende Bits haben eine Bedeutung:
 - Bit 0: Wert = "0": Der Encoder verfügt nicht über einen Index. Wert = "1" : Encoder-Index gefunden und soll verwendet werden.
 - Bit 15: Wert = "1": der Encoder ist ein Singleturn-Absolut-Encoder.
- 01_h (Alignment): Dieser Wert gibt den Versatz zwischen dem Index des Encoders und dem elektrischen Feld an.

Die exakte Bestimmung ist nur über das **Auto-Setup** möglich. Das Vorhandensein dieses Wertes ist für den *Closed Loop*-Betrieb mit Encoder erforderlich.

3502h MODBUS Rx PDO Mapping

Funktion

In dieses Objekt können die Objekte für das RX Mapping geschrieben werden.

Objektbeschreibung

Index 3502_h

Objektname MODBUS Rx PDO Mapping

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Kommunikation

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1748-B538662

Änderungshistorie Firmware Version FIR-v1738-B505321: Eintrag "Object Name"

geändert von "MODBUS Rx PDO-Mapping" auf "MODBUS Rx PDO

Mapping".

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 08_h

Subindex 01_h

Name Value #1

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 60400010_h

Subindex 02_h

Name Value #2
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert	00050008 _h	
Subindex	03 _h	
Name	Value #3	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	60600008 _h	
Subindex	04 _h	
Name	Value #4	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	32020020 _h	
Subindex	05 _h	
Name	Value #5	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	607A0020 _h	
Cubinday	00	
Subindex	06 _h	
Name	Value #6	
Datentyp	UNSIGNED32 lesen/schreiben	
Zugriff RDO Manning		
PDO-Mapping	nein	
Zulässige Werte	00040000	
Vorgabewert	60810020 _h	
Subindex	07 _h	
Name	Value #7	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	60420010 _h	
Subindex	08 _h	

Name	Value #8
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 60FE0120_h

Subindex 09_h
Name Value #9
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

 $\begin{array}{lll} \text{Subindex} & & 0 \text{A}_{\text{h}} \\ \text{Name} & & \text{Value #10} \\ \text{Datentyp} & & \text{UNSIGNED32} \\ \text{Zugriff} & & \text{lesen/schreiben} \end{array}$

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

 $\begin{array}{lll} \text{Subindex} & \text{OB}_{\text{h}} \\ \text{Name} & \text{Value \#11} \\ \text{Datentyp} & \text{UNSIGNED32} \\ \text{Zugriff} & \text{lesen/schreiben} \end{array}$

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

 $\begin{array}{lll} \text{Subindex} & \text{OC}_{\text{h}} \\ \text{Name} & \text{Value \#12} \\ \text{Datentyp} & \text{UNSIGNED32} \\ \text{Zugriff} & \text{lesen/schreiben} \end{array}$

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

 $\begin{array}{lll} \text{Subindex} & & & \text{0D}_{\text{h}} \\ \text{Name} & & \text{Value \#13} \\ \text{Datentyp} & & \text{UNSIGNED32} \\ \text{Zugriff} & & \text{lesen/schreiben} \end{array}$

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 0E_h
Name Value #14
Datentyp UNSIGNED32

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 0F_h

Name Value #15
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Subindex 10_h

Name Value #16
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

3602h MODBUS Tx PDO Mapping

Funktion

In dieses Objekt können die Objekte für das TX Mapping geschrieben werden.

Objektbeschreibung

Index 3602_h

Objektname MODBUS Tx PDO Mapping

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Kommunikation

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1748-B538662

Änderungshistorie Firmware Version FIR-v1738-B505321: Eintrag "Object Name"

geändert von "MODBUS Tx PDO-Mapping" auf "MODBUS Tx PDO

Mapping".

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 06_h

 $\begin{array}{lll} \text{Subindex} & & \text{O1}_{\text{h}} \\ \text{Name} & & \text{Value \#1} \\ \text{Datentyp} & & \text{UNSIGNED32} \\ \text{Zugriff} & & \text{lesen/schreiben} \end{array}$

nein

PDO-Mapping

Zulässige Werte

Vorgabewert 60410010_h

Subindex 02_h
Name Value #2
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00050008_h

Subindex 03_h
Name Value #3
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 60610008_h

Subindex 04_h
Name Value #4
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	60640020 _h	
Subindex	05 _h	
Name	Value #5	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	60440010 _h	
Subindex	06 _h	
Name	Value #6	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	60FD0020 _h	
Subindex	07 _h	
Name	Value #7	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	00000000 _h	
Subindex	08 _h	
Name	Value #8	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	00000000 _h	
Subindex	09 _h	
Name	Value #9	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	00000000 _h	

Subindex	$0A_h$
Name	Value #10
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	0B _h
Name	Value #11
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	${OC_h}$
Name	Value #12
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	$\overline{OD_h}$
Name	Value #13
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	0E _h
Name	Value #14
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	00000000 _h
Subindex	0F _h
Name	Value #15
Datentyp	UNSIGNED32

Zugriff	lesen/schreiben					
PDO-Mapping	nein					
Zulässige Werte						
Vorgabewert	00000000 _h					
Subindex	10 _h					
Name	Value #16					
Datentyp	UNSIGNED32					
Zugriff	lesen/schreiben					
PDO-Mapping	nein					
Zulässige Werte						
Vorgabewert	00000000 _h					

3700h Deviation Error Option Code

Funktion

Das Objekt enthält die auszuführende Aktion, wenn ein Schlepp- oder Schlupffehler ausgelöst wird.

Objektbeschreibung

Index	3700 _h
Objektname	Deviation Error Option Code
Object Code	VARIABLE
Datentyp	INTEGER16
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	FFFF _h
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1738-B501312: Eintrag "Object Name" geändert von "Following Error Option Code" auf "Deviation Error Option Code".

Beschreibung

Wert	Beschreibung
-32768 bis -2	Reserviert
-1	Keine Reaktion
0	Soforthalt
1	Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)
2	Abbremsen mit "quick stop ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)
3 bis 32767	Reserviert

4012h HW Information

Funktion

Dieses Objekt zeigt Informationen über die Hardware an.

 00_h

Objektbeschreibung

Index	4012 _h
Objektname	HW Information
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1540
Änderungshistorie	

Wertebeschreibung

Subindex

Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	01 _h
Subindov	01.
Subindex	01 _h
Subindex Name	01 _h EEPROM Size In Bytes
	•
Name	EEPROM Size In Bytes
Name Datentyp	EEPROM Size In Bytes UNSIGNED32
Name Datentyp Zugriff	EEPROM Size In Bytes UNSIGNED32 nur lesen

Beschreibung

Subindex 01: Zeigt die Größe des angeschlossenen EEPROMS in Bytes an. Der Wert "0" bedeutet, dass kein EEPROM angeschlossen ist.

4013h HW Configuration

Funktion

Mit diesem Objekt kann man bestimmte Hardware-Konfigurationen einstellen.

Objektbeschreibung

Index 4013_h

Objektname HW Configuration

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1540

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 01_h

Subindex 01_h

Name HW Configuration #1
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Bit 0 : reserviert

4014h Operating Conditions

Funktion

Dieses Objekt dient zum Auslesen aktueller Umgebungswerte der Steuerung.

Objektbeschreibung

Index 4014_h

Objektname Operating Conditions

Object Code ARRAY

Datentyp INTEGER32

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1540

Änderungshistorie Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei

Subindex 01 geändert von "lesen/schreiben" auf "nur lesen".

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei

Subindex 02 geändert von "lesen/schreiben" auf "nur lesen".

Firmware Version FIR-v1650-B472161: Eintrag "Name" geändert von "Temperature PCB [d?C]" auf "Temperature PCB [Celsius * 10]".

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei Subindex 03 geändert von "lesen/schreiben" auf "nur lesen".

Firmware Version FIR-v1738-B501312: Die Anzahl der Einträge haben

sich geändert von 4 auf 6.

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 05_h

Subindex 01_h

Name Voltage UB Power [mV]

Datentyp INTEGER32
Zugriff nur lesen
PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Subindex 02_h

Name Voltage UB Logic [mV]

Datentyp INTEGER32
Zugriff nur lesen
PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Subindex	03 _h
Name	Temperature PCB [Celsius * 10]
Datentyp	INTEGER32
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h

Subindex	04 _h
Name	Temperature Motor [Celsius * 10]
Datentyp	INTEGER32
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	00000000 _h

Subindex	05 _h
Name	Temperature Microcontroller Chip [Celsius * 10]
Datentyp	INTEGER32
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h

Beschreibung

Die Subindizes enthalten:

- 01_h: aktuelle Versorgungsspannung in [mV]
- 02_h: aktuelle Logikspannung in [mV]
- 03_h: aktuelle Temperatur der Steuerungsplatine in [d°C] (Zehntelgrad)
- 04_h: reserviert
- 05_h: reserviert

4040h Drive Serial Number

Funktion

Dieses Objekt hält die Seriennummer der Steuerung.

Objektbeschreibung

Index	4040 _h
Objektname	Drive Serial Number
Object Code	VARIABLE
Datentyp	VISIBLE_STRING
Speicherbar	nein
Zugriff	nur lesen

250

PDO-Mapping nein

Zulässige Werte

Vorgabewert 0

Firmware Version FIR-v1450

Änderungshistorie

4041h Device Id

Funktion

Dieses Objekt hält die ID des Geräts.

Objektbeschreibung

Index 4041_h
Objektname Device Id
Object Code VARIABLE

Datentyp OCTET_STRING

Speicherbar nein

Zugriff nur lesen

PDO-Mapping nein

Zulässige Werte

Vorgabewert 0

Firmware Version FIR-v1540

Änderungshistorie

603Fh Error Code

Funktion

Dieses Objekt liefert den Error-Code des letzten aufgetretenen Fehlers.

Er entspricht den unteren 16-Bits des Objekts 1003_h . Für die Beschreibung der Error-Codes schauen Sie unter Objekt 1003_h nach.

Objektbeschreibung

Index 603F_h
Objektname Error Code
Object Code VARIABLE
Datentyp UNSIGNED16
Speicherbar nein

Zugriff nur lesen
PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 0000_h Firmware Version FIR-v1426

Änderungshistorie

Beschreibung

Bedeutung des Fehlers siehe Objekt 1003_h (Pre-defined Error Field).

6040h Controlword

Funktion

Dieses Objekt steuert die CiA 402 Power State Machine.

Objektbeschreibung

Index	6040 _h
Objektname	Controlword
Object Code	VARIABLE
Datentyp	UNSIGNED16
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	0000 _h
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".

Beschreibung

Teile des Objektes sind in der Funktion abhängig vom aktuell gewählten Modus.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						OMS	HALT	FR		OMS [3]		EO	QS	EV	SO

SO (Switched On)

Wert = "1": Schaltet in den Zustand "Switched on"

EV (Enable Voltage)

Wert = "1": Schaltet in den Zustand "Enable voltage"

QS (Quick Stop)

Wert = "0": Schalten in den Zustand "Quick stop"

EO (Enable Operation)

Wert = "1": Schalten in den Zustand "Enable operation"

OMS (Operation Mode Specific)

Bedeutung abhängig vom gewählten Betriebsmodus

FR (Fault Reset)

Setzt einen Fehler zurück (falls möglich)

HALT

Wert = "1": Löst einen Halt aus, gültig in folgenden Modi:

Profile Position

- Velocity
- · Profile Velocity
- Profile Torque
- Interpolated Position Mode

6041h Statusword

Funktion

Dieses Objekt liefert Informationen zum Status der CiA 402 Power State Machine.

Objektbeschreibung

Index	6041 _h
Objektname	Statusword
Object Code	VARIABLE
Datentyp	UNSIGNED16
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000 _h
Firmware Version	FIR-v1426
Änderungshistorie	

Beschreibung

Teile des Objektes sind in der Funktion abhängig vom aktuell gewählten Modus. Schlagen Sie im entsprechenden Unterkapitel im Kapitel **Betriebsmodi** nach.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	CLA		OMS [2]		ILA	TARG	REM	SYNC	WARN	SOD	QS	VE	FAULT	OE	so	RTSO

RTSO (Ready To Switch On)

Wert = "1": Steuerung befindet sich in dem Zustand "Ready To Switch On"

SO (Switched On)

Wert = "1": Steuerung befindet sich in dem Zustand "Switched On"

OE (Operation Enabled)

Wert = "1": Steuerung befindet sich in dem Zustand "Operation Enabled"

FAULT

Fehler vorgefallen

VE (Voltage Enabled)

Spannung angelegt

QS (Quick Stop)

Wert = "0": Steuerung befindet sich in dem Zustand "Quick Stop"

SOD (Switched On Disabled)

Wert = "1": Steuerung befindet sich in dem Zustand "Switched On Disabled"

WARN (Warning)

Wert = "1": Warnung

SYNC (Synchronisation)

Wert = "1": Steuerung ist synchron zum Feldbus, Wert = "0": Steuerung ist nicht synchron zum Feldbus

REM (Remote)

Remote (Wert des Bits immer "1")

TARG

Zielvorgabe erreicht

ILA (Internal Limit Active)

Limit überschritten

OMS (Operation Mode Specific)

Bedeutung abhängig vom gewählten Betriebsmodus

CLA (Closed Loop Active)

Wert = "1": die Steuerung befindet sich im Status *Operation enabled* und der **Closed Loop** ist aktiviert.

In der nachfolgenden Tabelle sind die Bitmasken aufgelistet, die den Zustand der Steuerung aufschlüsseln.

Statusword (6041 _h)	Zustand
xxxx xxxx x0xx 0000	Not ready to switch on
xxxx xxxx x1xx 0000	Switch on disabled
xxxx xxxx x01x 0001	Ready to switch on
xxxx xxxx x01x 0011	Switched on
xxxx xxxx x01x 0111	Operation enabled
xxxx xxxx x00x 0111	Quick stop active
xxxx xxxx x0xx 1111	Fault reaction active
xxxx xxxx x0xx 1000	Fault

6042h VI Target Velocity

Funktion

Gibt die Zielgeschwindigkeit für den Velocity Modus in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index	6042 _h
Objektname	VI Target Velocity
Object Code	VARIABLE
Datentyp	INTEGER16
Speicherbar	ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00C8_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

6043h VI Velocity Demand

Funktion

Vorgabegeschwindigkeit in benutzerdefinierten Einheiten für den Regler im Velocity Mode.

Objektbeschreibung

Index 6043_h

Objektname VI Velocity Demand

Object Code VARIABLE

Datentyp INTEGER16

Speicherbar nein

Zugriff nur lesen

PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 0000_h Firmware Version FIR-v1426

Änderungshistorie

6044h VI Velocity Actual Value

Funktion

Gibt die aktuelle Istgeschwindigkeit im Velocity Modus in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index 6044_h

Objektname VI Velocity Actual Value

Object Code VARIABLE
Datentyp INTEGER16

Speicherbar nein

Zugriff nur lesen

PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 0000_h Firmware Version FIR-v1426

Änderungshistorie

6046h VI Velocity Min Max Amount

Funktion

Mit diesem Objekt können Minimalgeschwindigkeit und Maximalgeschwindigkeit in **benutzerdefinierten Einheiten** eingestellt werden.

Objektbeschreibung

Index	6046 _h
Objektname	VI Velocity Min Max Amount
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Firmware Version	FIR-v1426
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	02 _h
Subindex	01 _h
Name	MinAmount
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h
Subindex	02 _h
Name	MaxAmount
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00004E20 _h

Beschreibung

Subindex 1 enthält die Minimalgeschwindigkeit.

Subindex 2 enthält die Maximalgeschwindigkeit.

Wird eine Zielgeschwindigkeit (Objekt **6042**_h) vom Betrag her kleiner als die Minimalgeschwindigkeit angegeben, gilt die Minimalgeschwindigkeit und das Bit 11 (Internal Limit Reached) in **6041h Statusword**_h wird gesetzt.

Eine Zielgeschwindigkeit größer als die Maximalgeschwindigkeit setzt die Geschwindigkeit auf die Maximalgeschwindigkeit und das Bit 11 (Internal Limit Reached) in **6041h Statusword**_h wird gesetzt.

6048h VI Velocity Acceleration

Funktion

Setzt die Beschleunigungsrampe im Velocity Mode (siehe Velocity).

Objektbeschreibung

Index	6048 _h
Objektname	VI Velocity Acceleration
Object Code	RECORD
Datentyp	VELOCITY_ACCELERATION_DECELERATION
Speicherbar	ja, Kategorie: Applikation
Firmware Version	FIR-v1426
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	02 _h
Subindex	01 _h
Name	DeltaSpeed
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	000001F4 _h
Subindex	02 _h
Name	DeltaTime
Datentyp	UNSIGNED16
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO

Zulässige Werte

Vorgabewert 0001_h

Beschreibung

Die Beschleunigung wird als Bruch in benutzerdefinierten Einheiten angegeben:

Geschwindigkeitsänderung pro Zeitänderung.

Subindex 01_h: enthält die Geschwindigkeitsänderung.

Subindex 02_h: enthält die Zeitänderung.

6049h VI Velocity Deceleration

Funktion

Setzt die Verzögerung (Bremsrampe) im Velocity Mode (siehe Velocity).

Objektbeschreibung

Index	6049 _h
Objektname	VI Velocity Deceleration
Object Code	RECORD
Datentyp	VELOCITY_ACCELERATION_DECELERATION
Speicherbar	ja, Kategorie: Applikation
Firmware Version	FIR-v1426

Firmware version FIR-V1426

Änderungshistorie

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	02 _h

Subindex	01 _h	
Name	DeltaSpeed	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	000001F4 _h	
_		

Subindex 02_h

Name DeltaTime
Datentyp UNSIGNED16
Zugriff lesen/schreiben

PDO-Mapping

Zulässige Werte

Vorgabewert 0001_h

Beschreibung

Die Verzögerung wird als Bruch in benutzerdefinierten Einheiten angegeben:

RX-PDO

Geschwindigkeitsänderung pro Zeitänderung.

Subindex 01_h: enthält die Geschwindigkeitsänderung.

Subindex 02h: enthält die Zeitänderung.

604Ah VI Velocity Quick Stop

Funktion

Dieses Objekt definiert die Verzögerung (Bremsrampe), wenn im **Velocity Mode** der Quick Stop-Zustand eingeleitet wird.

Objektbeschreibung

Index 604A_h

Objektname VI Velocity Quick Stop

Object Code RECORD

Datentyp VELOCITY_ACCELERATION_DECELERATION

Speicherbar ja, Kategorie: Applikation

Firmware Version FIR-v1426

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 02_h

Subindex 01_h

Name DeltaSpeed
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte		
Vorgabewert	00001388 _h	
Subindex	02 _h	
Name	DeltaTime	
Datentyp	UNSIGNED16	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0001 _h	

Beschreibung

Die Verzögerung wird als Bruch in benutzerdefinierten Einheiten angegeben:

Geschwindigkeitsänderung pro Zeitänderung.

Subindex 01_h: enthält die Geschwindigkeitsänderung.

Subindex 02h: enthält die Zeitänderung.

604Ch VI Dimension Factor

Funktion

Hier wird die Einheit der Geschwindigkeitsangaben für die Objekte festgelegt, welche den **Velocity Mode** betreffen.

Objektbeschreibung

Index	604C _h
Objektname	VI Dimension Factor
Object Code	ARRAY
Datentyp	INTEGER32
Speicherbar	ja, Kategorie: Applikation
Firmware Version	FIR-v1426
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	02 _h
Subindex	01 _h

Name VI Dimension Factor Numerator

Datentyp INTEGER32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000001_h

Subindex 02_h

Name VI Dimension Factor Denominator

Datentyp INTEGER32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000001_h

Beschreibung

Der Subindex 1 enthält den Zähler (Multiplikator) und der Subindex 2 den Nenner (Divisor), mit dem interne Geschwindigkeitsangaben in Umdrehungen pro Minute verrechnet werden. Wird z.B. Subindex 1 auf den Wert "60" und Subindex 2 auf den Wert "1" eingestellt, erfolgt die Geschwindigkeitsangabe in Umdrehungen pro Sekunde (60 Umdrehungen pro 1 Minute).

605Ah Quick Stop Option Code

Funktion

Das Objekt enthält die auszuführende Aktion bei einem Übergang der **CiA 402 Power State Machine** in den Zustand *Quick Stop*.

Objektbeschreibung

Index 605A_h

Objektname Quick Stop Option Code

Object Code VARIABLE
Datentyp INTEGER16

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 0001_h Firmware Version FIR-v1426

Änderungshistorie

Beschreibung

Wert	Beschreibung
-32768 bis -1	Reserviert

Wert	Beschreibung
0	Soforthalt
1	Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart) und anschließendem Zustandswechsel zu "Switch on disabled"
2	Abbremsen mit "quick stop ramp" und anschließendem Zustandswechsel zu "Switch on disabled"
3 bis 32767	Reserviert

605Bh Shutdown Option Code

Funktion

Das Objekt enthält die auszuführende Aktion bei einem Übergang der **CiA 402 Power State Machine** vom Zustand *Operation enabled* in den Zustand *Ready to switch on*.

Objektbeschreibung

Index	605B _h
Objektname	Shutdown Option Code
Object Code	VARIABLE
Datentyp	INTEGER16
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0001 _h
Firmware Version	FIR-v1426
Änderungshistorie	

Beschreibung

Wert	Beschreibung
-32768 bis -1	Reserviert
0	Soforthalt
1	Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart) und anschließendem Zustandswechsel zu "Switch on disabled"
2 bis 32767	Reserviert

605Ch Disable Option Code

Funktion

Das Objekt enthält die auszuführende Aktion bei einem Übergang der **CiA 402 Power State Machine** vom Zustand *Operation enabled* in den Zustand *Switched on*.

Objektbeschreibung

Index	605C _h	

Objektname Disable Option Code Object Code **VARIABLE INTEGER16** Datentyp Speicherbar ja, Kategorie: Applikation Zugriff lesen/schreiben **PDO-Mapping** nein Zulässige Werte Vorgabewert 0001_{h} FIR-v1426 Firmware Version Änderungshistorie

Beschreibung

Wert	Beschreibung
-32768 bis -1	Reserviert
0	Soforthalt
1	Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart) und anschließendem Zustandswechsel zu "Switch on disabled"
2 bis 32767	Reserviert

605Dh Halt Option Code

Funktion

Das Objekt enthält die auszuführende Aktion, wenn im Controlword **6040**_h das Bit 8 (Halt) gesetzt wird.

Objektbeschreibung

Index	605D _h
Objektname	Halt Option Code
Object Code	VARIABLE
Datentyp	INTEGER16
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0001 _h
Firmware Version	FIR-v1426
Änderungshistorie	

Beschreibung

Wert	Beschreibung
-32768 bis 0	Reserviert
1	Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)

Wert	Beschreibung
2	Abbremsen mit "quick stop ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)
3 bis 32767	Reserviert

605Eh Fault Option Code

Funktion

Das Objekt enthält die auszuführende Aktion, wie der Motor im Fehlerfall zum Stillstand gebracht werden soll.

Objektbeschreibung

Index	605E _h
Objektname	Fault Option Code
Object Code	VARIABLE
Datentyp	INTEGER16
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	0002 _h
Firmware Version	FIR-v1426
Änderungshistorie	

Beschreibung

Wert	Beschreibung
-32768 bis -1	Reserviert
0	Soforthalt
1	Abbremsen mit "slow down ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)
2	Abbremsen mit "quick stop ramp" (Verzögerung (Bremsrampe) je nach Betriebsart)
3 bis 32767	Reserviert

6060h Modes Of Operation

Funktion

In dieses Objekt wird der gewünschte Betriebsmodus eingetragen.

Objektbeschreibung

Index	6060 _h	
Objektname	Modes Of Operation	
Object Code	VARIABLE	

Datentyp	INTEGER8
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00 _h
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".

Beschreibung

Modus	Beschreibung
-2	Auto-Setup
-1	Takt-Richtungsmodus
0	No mode change/no mode assigned
1	Profile Position Mode
2	Velocity Mode
3	Profile Velocity Mode
4	Profile Torque Mode
5	Reserved
6	Homing Mode
7	Interpolated Position Mode
8	Cyclic Synchronous Position Mode
9	Cyclic Synchronous Velocity Mode
10	Cyclic Synchronous Torque Mode

6061h Modes Of Operation Display

Funktion

Zeigt den aktuellen Betriebsmodus. Siehe auch 6060h Modes Of Operation.

Objektbeschreibung

Index	6061 _h
Objektname	Modes Of Operation Display
Object Code	VARIABLE
Datentyp	INTEGER8
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	00 _h
Firmware Version	FIR-v1426
Änderungshistorie	

6062h Position Demand Value

Funktion

Gibt die aktuelle Sollposition in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index	6062 _h
Objektname	Position Demand Value
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h
Firmware Version	FIR-v1426
Änderungshistorie	

6063h Position Actual Internal Value

Funktion

Enthält die aktuelle Drehgeberposition in Inkrementen. Im Gegensatz zu den Objekten **6062**_h und **6064**_h wird dieser Wert nach einem **Homing** nicht auf "0" gesetzt.

Hinweis

Ist die Encoderauflösung im Objekt $608F_h = 0$, sind die Zahlenwerte dieses Objekts ungültig.

Objektbeschreibung

Index	6063 _h
Objektname	Position Actual Internal Value
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	00000000 _h
Firmware Version	FIR-v1426
Änderungshistorie	

6064h Position Actual Value

Funktion

Enthält die aktuelle Istposition in benutzerdefinierten Einheiten.

Objektbeschreibung

Index	6064 _h
Objektname	Position Actual Value
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h
Firmware Version	FIR-v1426
Änderungshistorie	

6065h Following Error Window

Funktion

Definiert den maximal erlaubten **Schleppfehler** in **benutzerdefinierten Einheiten** symmetrisch zur **Sollposition**.

Objektbeschreibung

Index	6065 _h
Objektname	Following Error Window
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00000100 _h
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1504: Eintrag "Savable" geändert von "nein" auf "ja, Kategorie: Applikation".

Beschreibung

Weicht die Istposition von der Sollposition so stark ab, dass der Wert dieses Objekts überschritten wird, wird das Bit 13 im Objekt **6041**_h gesetzt. Die Abweichung muss länger andauern als die Zeit in dem Objekt **6066**_h.

Wird der Wert des "Following Error Window" auf "FFFFFFF $_h$ gesetzt, wird die Schleppfehler-Überwachung abgeschaltet.

267

In dem Objekt **3700**_h kann eine Reaktion auf den Schleppfehler gesetzt werden. Wenn eine Reaktion definiert ist, wird auch ein Fehler im Objekt **1003**_h eingetragen.

6066h Following Error Time Out

Funktion

Zeit in Millisekunden, bis ein zu großer Schleppfehler zu einer Fehlermeldung führt.

Objektbeschreibung

Index 6066_h

Objektname Following Error Time Out

Object Code VARIABLE
Datentyp UNSIGNED16

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 0064_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1504: Eintrag "Savable" geändert von "nein"

auf "ja, Kategorie: Applikation".

Beschreibung

Weicht die Istposition von der Sollposition so stark ab, dass der Wert des Objekts **6065**_h überschritten wird, wird das Bit 13 im Objekt **6041**_h gesetzt. Die Abweichung muss länger als die Zeit in diesem Objekt anhalten.

In dem Objekt 3700_h kann eine Reaktion auf den Schleppfehler gesetzt werden. Wenn eine Reaktion definiert ist, wird auch ein Fehler im Objekt 1003_h eingetragen.

6067h Position Window

Funktion

Gibt relativ zur Zielposition einen symmetrischen Bereich an, innerhalb dessen das Ziel als erreicht gilt in den Modi **Profile Position** und **Interpolated Position Mode**.

Objektbeschreibung

Index 6067_h

Objektname Position Window
Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 0000000A_h

Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1504: Eintrag "Savable" geändert von "nein"

auf "ja, Kategorie: Applikation".

Beschreibung

Ist die Abweichung der Istposition zur Zielposition kleiner als der Wert dieses Objekts, wird das Bit 10 im Objekt **6041**_h gesetzt. Die Bedingung muss länger erfüllt sein als die im Objekt **6066**_h definierte Zeit.

Wird der Wert auf "FFFFFFF"_h gesetzt, wird die Überwachung abgeschaltet.

6068h Position Window Time

Funktion

Die Istposition muss sich für diese Zeit in Millisekunden innerhalb des "Position Window" (6067_h) befinden, damit die Zielposition als erreicht gilt in den Modi **Profile Position** und **Interpolated Position Mode**.

Objektbeschreibung

Index 6068_h

Objektname Position Window Time

Object Code VARIABLE
Datentyp UNSIGNED16

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 0064_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1504: Eintrag "Savable" geändert von "nein"

auf "ja, Kategorie: Applikation".

Beschreibung

Ist die Abweichung der Istposition zur Zielposition kleiner als der Wert des Objekts **6067**_h, wird das Bit 10 im Objekt **6041**_h gesetzt. Die Bedingung muss länger erfüllt sein als die im Objekt **6066**_h definierte Zeit.

606Bh Velocity Demand Value

Funktion

Vorgabegeschwindigkeit in benutzerdefinierten Einheiten für den Regler im Profile Velocity Mode.

Objektbeschreibung

Index 606B_h

Objektname Velocity Demand Value

Object Code VARIABLE
Datentyp INTEGER32

Speicherbar nein

Zugriff nur lesen

PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1426

Änderungshistorie

Beschreibung

Dieses Objekt enthält die Ausgabe des Rampengenerators, die gleichzeitig der Vorgabewert für den Geschwindigkeitsregler ist.

606Ch Velocity Actual Value

Funktion

Aktuelle Istgeschwindigkeit in benutzerdefinierten Einheiten.

Objektbeschreibung

Index606ChObjektnameVelocity Actual ValueObject CodeVARIABLEDatentypINTEGER32SpeicherbarneinZugriffnur lesenPDO-MappingTX-PDOZulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1426

Änderungshistorie

606Dh Velocity Window

Funktion

Gibt relativ zur Zielgeschwindigkeit einen symmetrischen Bereich an, innerhalb dessen das Ziel als erreicht gilt im Modus **Profile Velocity**.

Objektbeschreibung

Index 606D_h

Objektname Velocity Window
Object Code VARIABLE
Datentyp UNSIGNED16

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 001E_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

Beschreibung

Ist die Abweichung der Istgeschwindigkeit zur Sollgeschwindigkeit kleiner als der Wert dieses Objekts, wird das Bit 10 im Objekt **6041**_h gesetzt. Die Bedingung muss länger erfüllt sein als die im Objekt **6066**_h definierte Zeit (siehe auch **Statusword im Modus Profile Velocity**).

606Eh Velocity Window Time

Funktion

Die Istgeschwindigkeit muss sich für diese Zeit in Millisekunden innerhalb des "Velocity Window" (606D_h) befinden, damit das Ziel als erreicht gilt.

Objektbeschreibung

Index 606E_h

Objektname Velocity Window Time

Object Code VARIABLE
Datentyp UNSIGNED16

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 0000_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

Beschreibung

Beschreibung

Ist die Abweichung der Istgeschwindigkeit zur Sollgeschwindigkeit kleiner als der Wert des Objekts **606D**_h, wird das Bit 10 im Objekt **6041**_h gesetzt. Die Bedingung muss länger erfüllt sein als die im Objekt **6066** definierte Zeit (siehe auch **Statusword im Modus Profile Velocity**).

6071h Target Torque

Funktion

Dieses Objekt enthält das Zieldrehmoment für den **Profile Torque** und **Cyclic Synchronous Torque** Modus in Promille des Nenndrehmoments.

271

Objektbeschreibung

Index 6071_h

Objektname Target Torque
Object Code VARIABLE
Datentyp INTEGER16

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 0000_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

Beschreibung

Dieses Objekt wird als Tausendstel des Drehmoments gerechnet, z.B. der Wert "500" bedeutet "50%" des Nenndrehmoments, "1100" ist äquivalent zu 110%. Das Nenndrehmoment entspricht dem Nennstrom im Objekt **203B**_h:01.

Das Zieldrehmoment kann das Spitzendrehmoment (proportional zum Spitzenstrom in **2031**_h) nicht übersteigen.

6072h Max Torque

Funktion

Das Objekt beschreibt das maximale Drehmoment für den **Profile Torque** und **Cyclic Synchronous Torque** Modus in Promille des Nenndrehmoments.

Objektbeschreibung

Index 6072_h
Objektname Max Torque
Object Code VARIABLE
Datentyp UNSIGNED16

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 0000_h Firmware Version FIR-v1426

Änderungshistorie

Beschreibung

Dieses Objekt wird als Tausendstel des Drehmoments gerechnet, z.B. der Wert "500" bedeutet "50%" des Nenndrehmoments, "1100" ist äquivalent zu 110%. Das Nenndrehmoment entspricht dem Nennstrom im Objekt **203B**_h:01.

Das Zieldrehmoment kann das Spitzendrehmoment (proportional zum Spitzenstrom in **2031**_h) nicht übersteigen.

6074h Torque Demand

Funktion

Momentaner vom Rampengenerator geforderter Drehmomentsollwert in Promille des Nominaldrehmonents für den internen Regler.

Objektbeschreibung

Index	6074 _h
Objektname	Torque Demand
Object Code	VARIABLE
Datentyp	INTEGER16
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000 _h
Firmware Version	FIR-v1426
Änderungshistorie	

Beschreibung

Dieses Objekt wird als Tausendstel des Drehmoments gerechnet, z.B. der Wert "500" bedeutet "50%" des Nenndrehmoments, "1100" ist äquivalent zu 110%. Das Nenndrehmoment entspricht dem Nennstrom im Objekt **203B**_h:01.

Das Zieldrehmoment kann das Spitzendrehmoment (proportional zum Spitzenstrom in **2031**_h) nicht übersteigen.

6075h Motor Rated Current

Funktion

Enthält den in **203B**_h:01_h eingetragen Nennstrom in mA.

6077h Torque Actual Value

Funktion

Dieses Objekt zeigt den aktuellen Drehmomentwert in Promille des Nenndrehmoments für den internen Regler.

Objektbeschreibung

Index	6077 _h
Objektname	Torque Actual Value
Object Code	VARIABLE
Datentyp	INTEGER16

Speicherbar nein

Zugriff nur lesen

PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 0000_h Firmware Version FIR-v1540

Änderungshistorie

Beschreibung

Dieses Objekt wird als Tausendstel des Drehmoments gerechnet, z.B. der Wert "500" bedeutet "50%" des Nenndrehmoments, "1100" ist äquivalent zu 110%. Das Nenndrehmoment entspricht dem Nennstrom im Objekt **203B**_h:01.

Das Zieldrehmoment kann das Spitzendrehmoment (proportional zum Spitzenstrom in **2031**_h) nicht übersteigen.

607Ah Target Position

Funktion

Dieses Objekt gibt die Zielposition in **benutzerdefinierten Einheiten** für den **Profile Position**und **Cyclic Synchronous Position** Modus an.

Objektbeschreibung

Index 607A_h
Objektname Target Position
Object Code VARIABLE
Datentyp INTEGER32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000FA0_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

607Bh Position Range Limit

Funktion

Enthält die Minimal- und Maximalposition in benutzerdefinierten Einheiten.

Objektbeschreibung

Index 607B_h

Objektname Position Range Limit

Object Code ARRAY

Datentyp INTEGER32

Speicherbar ja, Kategorie: Applikation

FIR-v1426

Firmware Version

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 02_h

Subindex 01_h

Name Min Position Range Limit

Datentyp INTEGER32
Zugriff lesen/schreiben
PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Subindex 02_h

Name Max Position Range Limit

Datentyp INTEGER32
Zugriff lesen/schreiben
PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Wird dieser Bereich über- oder unterschritten, erfolgt ein Überlauf. Um diesen Überlauf zu verhindern, können im Objekt **607D**_h ("Software Position Limit") Grenzwerte für die Zielposition eingestellt werden.

607Ch Home Offset

Funktion

Gibt die Differenz zwischen Null-Position der Steuerung und dem Referenzpunkt der Maschine in **benutzerdefinierten Einheiten** an.

Objektbeschreibung

Index	607C _b	
IIIGOX	001 On	

Objektname Home Offset
Object Code VARIABLE
Datentyp INTEGER32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1426

Änderungshistorie

607Dh Software Position Limit

Funktion

Legt die Grenzpositionen relativ zum Referenzpunkt der Applikation in **benutzerdefinierten Einheiten** fest.

Objektbeschreibung

Index607DhObjektnameSoftware Position LimitObject CodeARRAYDatentypINTEGER32Speicherbarja, Kategorie: ApplikationFirmware VersionFIR-v1426

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 02_h

Subindex 01_h

Name Min Position Limit
Datentyp INTEGER32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Subindex	02 _h
Name	Max Position Limit
Datentyp	INTEGER32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00000000 _h

Beschreibung

Die absolute Zielposition muss innerhalb der hier gesetzten Grenzen liegen. Der Home Offset (607C_h) wird nicht berücksichtigt.

607Eh Polarity

Funktion

Mit diesem Objekt lässt sich die Drehrichtung umkehren.

Objektbeschreibung

Index	607E _h
Objektname	Polarity
Object Code	VARIABLE
Datentyp	UNSIGNED8
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00 _h
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-Mapping" bei Subindex 00 geändert von "nein" auf "RX-PDO".

Beschreibung

Generell gilt für die Richtungsumkehr: Ist ein Bit auf den Wert "1" gesetzt, ist die Umkehrung aktiviert. Ist der Wert "0", ist die Drehrichtung wie im jeweiligen Modus beschrieben.

7	6	5	4	3	2	1	0
POS	VEL						

VEL (Velocity)

Umkehr der Drehrichtung in folgenden Modi:

- Profile Velocity Mode
- Cyclic Synchronous Velocity Mode
- Velocity Mode

POS (Position)

Umkehr der Drehrichtung in folgenden Modi:

- Profile Position Mode
- Cyclic Synchronous Position Mode

Tipp

Sie können ein Invertieren des Drehfeldes erzwingen, dass alle Betriebsmodi betrifft. Siehe Objekt 3212_h : 02_h .

607Fh Max Profile Velocity

Funktion

Gibt die maximale Geschwindigkeit für den Modus **Profile Position**, **Interpolated Position Mode** und **Profile Velocity** in **benutzerdefinierten Einheiten** an.

Objektbeschreibung

Index	607F _h

Objektname Max Profile Velocity

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00030D40_h Firmware Version FIR-v1540

Änderungshistorie Firmware Version FIR-v1738-B501312: Eintrag "Object Name"

geändert von "Max profile velocity" auf "Max Profile Velocity".

Firmware Version FIR-v1738-B501312: Eintrag "Datentyp" geändert

von "INTEGER16" auf "UNSIGNED32".

Firmware Version FIR-v1738-B501312: Eintrag "Speicherbar"

geändert von "nein" auf "ja, Kategorie: Applikation".

Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "Zugriff" bei

Subindex 00 geändert von "nur lesen" auf "lesen/schreiben".

Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-Mapping" bei Subindex 00 geändert von "TX-PDO" auf "RX-PDO".

6080h Max Motor Speed

Funktion

Gibt die maximal zulässige Geschwindigkeit des Motors in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index 6080_h

Objektname Max Motor Speed

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Tuning Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00030D40_h Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von "ja,

Kategorie: Applikation" auf "ja, Kategorie: Tuning".

Firmware Version FIR-v1738-B501312: Eintrag "Object Name" geändert von "Maximum Speed" auf "Max Motor Speed".

Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-Mapping" bei Subindex 00 geändert von "nein" auf "RX-PDO".

6081h Profile Velocity

Funktion

Gibt die maximale Fahrgeschwindigkeit in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index 6081_h

Objektname Profile Velocity
Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 000001F4_h Firmware Version FIR-v1426

Änderungshistorie

6082h End Velocity

Funktion

Gibt die Geschwindigkeit am Ende der gefahrenen Rampe in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index 6082_h
Objektname End Velocity
Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1426

Änderungshistorie

6083h Profile Acceleration

Funktion

Gibt die maximale Beschleunigung in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index 6083_h

Objektname Profile Acceleration

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 000001F4_h Firmware Version FIR-v1426

Änderungshistorie

6084h Profile Deceleration

Funktion

Gibt die maximale Verzögerung (Bremsrampe) in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index 6084_h

Objektname Profile Deceleration

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 000001F4_h Firmware Version FIR-v1426

Änderungshistorie

6085h Quick Stop Deceleration

Funktion

Gibt die maximale Quick Stop-Verzögerung in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index 6085_h

Objektname Quick Stop Deceleration

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00001388_h Firmware Version FIR-v1426

Änderungshistorie

6086h Motion Profile Type

Funktion

Gibt den Rampentyp für die Modi Profile Position und Profile Velocity an.

Objektbeschreibung

Index 6086_h

Objektname Motion Profile Type

Object Code VARIABLE
Datentyp INTEGER16

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 0000_h Firmware Version FIR-v1426

Änderungshistorie

Beschreibung

Wert = "0": = Trapez-Rampe

Wert = "3": Rampe mit begrenztem Ruck

6087h Torque Slope

Funktion

Dieses Objekt enthält die Steigung des Drehmoments im Torque Mode.

Objektbeschreibung

Index 6087_h
Objektname Torque Slope
Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1426

Änderungshistorie

Beschreibung

Dieses Objekt wird als Tausendstel des Drehmoments gerechnet, z.B. der Wert "500" bedeutet "50%" des Nenndrehmoments, "1100" ist äquivalent zu 110%. Das Nenndrehmoment entspricht dem Nennstrom im Objekt **203B**_h:01.

Das Zieldrehmoment kann das Spitzendrehmoment (proportional zum Spitzenstrom in ${\bf 2031}_h$) nicht übersteigen.

608Fh Position Encoder Resolution

Funktion

Enthält die physikalische Auflösung des Encoders/Sensors, der für die Positionsregelung verwendet wird.

Objektbeschreibung

Index 608F_h

Objektname Position Encoder Resolution

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Tuning

Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1738-B501312: Eintrag "Speicherbar"

geändert von "ja, Kategorie: Applikation" auf "ja, Kategorie: Tuning".

Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-Mapping" bei Subindex 01 geändert von "nein" auf "RX-PDO". Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-

Mapping" bei Subindex 02 geändert von "nein" auf "RX-PDO".

Wertebeschreibung

Subindex	00 _h	
Name	Highest Sub-index Supported	
Datentyp	UNSIGNED8	
Zugriff	nur lesen	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	02 _h	
Subindex	01 _h	
Name	Encoder Increments	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	000007D0 _h	
Subindex	02 _h	
Name	Motor Revolutions	

Beschreibung

Datentyp

PDO-Mapping Zulässige Werte Vorgabewert

Zugriff

Position Encoder Resolution = Encoder Increments (608F_h:01_h) / Motor Revolutions (608F_h:02_h)

UNSIGNED32

RX-PDO

0000001_h

lesen/schreiben

6090h Velocity Encoder Resolution

Funktion

Enthält die physikalische Auflösung des Encoders/Sensors, der für die Drehzahlregelung verwendet wird.

Objektbeschreibung

Index	6090 _h
Objektname	Velocity Encoder Resolution

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Tuning

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version

FIR-v1738-B501312

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 02_h

Subindex 01_h

Name Encoder Increments Per Second

Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Subindex 02_h

Name Motor Revolutions Per Second

Datentyp UNSIGNED32 Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Velocity Encoder Resolution = Encoder Increments per second $(6090_h:01_h)$ / Motor Revolutions per second $(6090_h:02_h)$

6091h Gear Ratio

Funktion

Anzahl der Motorumdrehungen pro Umdrehung der Abtriebsachse.

284

Objektbeschreibung

Index 6091_h
Objektname Gear Ratio
Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-

Mapping" bei Subindex 01 geändert von "nein" auf "RX-PDO".

Firmware Version FIR-v1738-B501312: Tabellen-Eintrag "PDO-Mapping" bei Subindex 02 geändert von "nein" auf "RX-PDO".

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 02_h

Subindex 01_h

Name Motor Revolutions
Datentyp UNSIGNED32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000001_h

Subindex 02_h

Name Shaft Revolutions
Datentyp UNSIGNED32
Zugriff lesen/schreiben
PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000001_h

Beschreibung

Gear Ratio = Motor Revolutions (6091_h:01_h) / Shaft Revolutions (6091_h:02_h)

285

6092h Feed Constant

Funktion

Vorschub im Falle eines Linearantriebs, in **benutzerdefinierten Einheiten** pro Umdrehungen der Abtriebsachse.

Objektbeschreibung

Index	6092 _h
Objektname	Feed Constant
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Firmware Version	FIR-v1426
Änderungshistorie	

Wertebeschreibung

00 _h	
Highest Sub-index Supported	
UNSIGNED8	
nur lesen	
nein	
02 _h	
01 _h	
Feed	
UNSIGNED32	
lesen/schreiben	
RX-PDO	
0000001 _h	
02 _h	
Shaft Revolutions	
UNSIGNED32	
lesen/schreiben	
RX-PDO	
00000001 _h	

Beschreibung

Feed Constant = Feed $(6092_h:01_h)$ / Shaft Revolutions $(6092_h:02_h)$

6096h Velocity Factor

Funktion

Dieses Objekt beinhaltet den Faktor, der zum Umrechnen von benutzerdefinierten Geschwindigkeitseinheiten verwendet wird. Siehe Kapitel **Benutzerdefinierte Einheiten**.

Objektbeschreibung

Index 6096_h Objektname **Velocity Factor** Object Code **ARRAY** Datentyp **UNSIGNED32** Speicherbar ja, Kategorie: Applikation Zugriff nur lesen **PDO-Mapping** nein Zulässige Werte Vorgabewert Firmware Version FIR-v1738-B501312 Änderungshistorie

Wertebeschreibung

Subindex	00 _h	
Name	Highest Sub-index Supported	
Datentyp	UNSIGNED8	
Zugriff	nur lesen	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	02 _h	
Subindex	01 _h	
Name	Numerator	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	00000001 _h	
Subindex	02 _h	
Name	Divisor	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	0000001 _b	

Beschreibung

Die Subindizes haben folgende Funktionen:

- 01_h: Zähler des Faktors
- 02_h: Nenner des Faktors

6097h Acceleration Factor

Funktion

Dieses Objekt beinhaltet den Faktor, der zum Umrechnen von benutzerdefinierten Beschleunigungseinheiten verwendet wird. Siehe Kapitel **Benutzerdefinierte Einheiten**.

Objektbeschreibung

Index	6097 _h
Objektname	Acceleration Factor
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1738-B501312
Änderungshistorie	

Wertebeschreibung

Subindov	00	
Subindex	00 _h	
Name	Highest Sub-index Supported	
Datentyp	UNSIGNED8	
Zugriff	nur lesen	
PDO-Mapping	nein	
Zulässige Werte		
Vorgabewert	02 _h	
Cubinday	04	
Subindex	01 _h	
Name	Numerator	
Datentyp	UNSIGNED32	
Zugriff	lesen/schreiben	
PDO-Mapping	RX-PDO	
Zulässige Werte		
Vorgabewert	00000001 _h	
Subindex	02 _h	
Name	Divisor	

Datentyp UNSIGNED32 Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000001_h

Beschreibung

Die Subindizes haben folgende Funktionen:

01_h: Zähler des Faktors

02_h: Nenner des Faktors

6098h Homing Method

Funktion

Dieses Objekt definiert die Referenzfahrt-Methode im Homing Mode.

Objektbeschreibung

Index 6098_h
Objektname Homing Method
Object Code VARIABLE
Datentyp INTEGER8

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 23_h

Firmware Version FIR-v1426

Änderungshistorie

6099h Homing Speed

Funktion

Gibt die Geschwindigkeiten für den Homing Mode (6098_n) in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index 6099_h
Objektname Homing Speed

Objektilatile Hoffling Spee

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Firmware Version FIR-v1426

Änderungshistorie

Wertebeschreibung

Subindex	00 _h					
Name	Highest Sub-index Supported					
Datentyp	UNSIGNED8					
Zugriff	nur lesen					
PDO-Mapping	nein					
Zulässige Werte						
Vorgabewert	02 _h					
Subindex	01 _h					
Name	Speed During Search For Switch					
Datentyp	UNSIGNED32					
Zugriff	lesen/schreiben					
PDO-Mapping	RX-PDO					
Zulässige Werte						
Vorgabewert	00000032 _h					
Subindex	02 _h					
Name	Speed During Search For Zero					
Datentyp	UNSIGNED32					
Zugriff	lesen/schreiben					
PDO-Mapping	RX-PDO					
Zulässige Werte						
Vorgabewert	000000A _h					

Beschreibung

In Subindex 1 wird die Geschwindigkeit für die Suche nach dem Schalter angegeben.

In Subindex 2 wird die (niedrigere) Geschwindigkeit für die Suche nach der Referenzposition angegeben.

Hinweis

- Die Geschwindigkeit in Subindex 2 ist gleichzeitig die Anfangsgeschwindigkeit beim Start der Beschleunigungsrampe. Wird diese zu hoch eingestellt, verliert der Motor Schritte bzw. dreht sich überhaupt nicht. Eine zu hohe Einstellung führt dazu, dass die Indexmarkierung übersehen wird. Die Geschwindigkeit in Subindex 2 soll daher unter 1000 Schritten pro Sekunde sein.
- Die Geschwindigkeit in Subindex 1 muss größer sein als die Geschwindigkeit in Subindex 2.

609Ah Homing Acceleration

Funktion

Gibt die Beschleunigungsrampe für den Homing Mode in benutzerdefinierten Einheiten an.

Objektbeschreibung

Index 609A_h

Objektname Homing Acceleration

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

 $\begin{array}{lll} \mbox{Vorgabewert} & \mbox{000001F4}_h \\ \mbox{Firmware Version} & \mbox{FIR-v1426} \end{array}$

Änderungshistorie

Beschreibung

Die Rampe wird nur beim Losfahren verwendet. Beim Erreichen des Schalters wird sofort auf die niedrigere Geschwindigkeit umgeschaltet und beim Erreichen der Endposition wird sofort gestoppt.

60A2h Jerk Factor

Funktion

Dieses Objekt beinhaltet den Faktor, der zum Umrechnen von benutzerdefinierten Ruckeinheitein verwendet wird. Siehe Kapitel **Benutzerdefinierte Einheiten**.

Objektbeschreibung

Index 60A2_h
Objektname Jerk Factor
Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte Vorgabewert

-.

Firmware Version FIR-v1738-B501312

Änderungshistorie

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert	02 _h
Subindex	01 _h
Name	Numerator
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00000001 _h
Subindex	02 _h
Name	Divisor
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00000001 _h

Die Subindizes haben folgende Funktionen:

- 01_h: Zähler des Faktors
- 02_h: Nenner des Faktors

60A4h Profile Jerk

Funktion

Im Falle einer Rampe mit begrenztem Ruck kann in diesem Objekt die Größe des Rucks eingetragen werden. Ein Eintrag mit dem Wert "0" bedeutet, dass der Ruck nicht begrenzt ist.

Objektbeschreibung

Index	60A4 _h
Objektname	Profile Jerk
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1614: Eintrag "Name" geändert von "End Acceleration Jerk" auf "Begin Deceleration Jerk".
	Firmware Version FIR-v1614: Eintrag "Name" geändert von "Begin Deceleration Jerk" auf "End Acceleration Jerk".

Wertebeschreibung

Subindex	00 _h					
Name	Highest Sub-index Supported					
Datentyp	UNSIGNED8					
Zugriff	nur lesen					
PDO-Mapping	nein					
Zulässige Werte						
Vorgabewert	04 _h					
Subindex	01 _h					
Name	Begin Acceleration Jerk					
Datentyp	UNSIGNED32					
Zugriff	lesen/schreiben					
PDO-Mapping	nein					
Zulässige Werte						
Vorgabewert	000003E8 _h					
Subindex	02 _h					
Name	Begin Deceleration Jerk					
Datentyp	UNSIGNED32					
Zugriff	lesen/schreiben					
PDO-Mapping	nein					
Zulässige Werte						
Vorgabewert	000003E8 _h					
0.1: 1						
Subindex	03 _h					
Name	End Acceleration Jerk					
Datentyp	UNSIGNED32					
Zugriff	lesen/schreiben					
PDO-Mapping	nein					
Zulässige Werte						
Vorgabewert	000003E8 _h					
Subindex	04 _h					
Name	End Deceleration Jerk					
Datentyp UNSIGNED32						
Zugriff	lesen/schreiben					
PDO-Mapping	nein					
Zulässige Werte	HGIH					
Vorgabewert	000003E8 _h					
vorgabewell	ουυυυο⊑ο _h					

- Subindex 01_h (Begin Acceleration Jerk): Anfangsruck bei Beschleunigung
- Subindex 02_h (Begin Deceleration Jerk): Anfangsruck bei Bremsung
- Subindex 03_h (End Acceleration Jerk): Abschlussruck bei Beschleunigung
- Subindex 04_h (End Deceleration Jerk): Abschlussruck bei Bremsung

60A8h SI Unit Position

Funktion

Dieses Objekt beinhaltet die Positionseinheit. Siehe Kapitel Benutzerdefinierte Einheiten.

Objektbeschreibung

Index	60A8 _h
Objektname	SI Unit Position
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	FF410000 _h
Firmware Version	FIR-v1738-B501312
Änderungshistorie	

Beschreibung

Das Objekt 60A8_h enthält :

- Bits 16 bis 23: die Positionseinheit (siehe Kapitel **Einheiten**)
- Bits 24 bis 31: den Exponenten einer Zehnerpotenz (siehe Kapitel **Einheiten**)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Exponent einer Zehnerpotenz										Eir	heit			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserviert (00h)								re	servier	t (00h))			

60A9h SI Unit Velocity

Funktion

Dieses Objekt beinhaltet die Geschwindigkeitseinheit. Siehe Kapitel Benutzerdefinierte Einheiten.

Objektbeschreibung

Index	60A9 _h
Objektname	SI Unit Velocity
Object Code	VARIABLE

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 00B44700_h

Firmware Version FIR-v1738-B501312

Änderungshistorie

Beschreibung

Das Objekt 60A9_h enthält :

- Bits 8 bis 15: die Zeiteinheit (siehe Kapitel Einheiten)
- Bits 16 bis 23: die Positionseinheit (siehe Kapitel **Einheiten**)
- Bits 24 bis 31: den Exponenten einer Zehnerpotenz (siehe Kapitel **Einheiten**)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Exponent einer Zehnerpotenz								Pos	sitionse	einheit				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Zeiteinheit								res	ervier	(00h)				

60B0h Position Offset

Funktion

Offset für den Positionssollwert in **benutzerdefinierten Einheiten**. Wird in den Modi **Cyclic Synchronous Position**, und **Takt-Richtungs-Modus** berücksichtigt.

Objektbeschreibung

Index	60B0 _h
Objektname	Position Offset
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00000000 _h
Firmware Version	FIR-v1738-B505321
Änderungshistorie	

60B1h Velocity Offset

Funktion

Offset für den Geschwindigkeitssollwert in benutzerdefinierten Einheiten. Wird in den Modi Cyclic Synchronous Position, Cyclic Synchronous Velocity und Takt-Richtungs-Modus berücksichtigt.

Objektbeschreibung

Index 60B1_h

Objektname Velocity Offset
Object Code VARIABLE
Datentyp INTEGER32

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Firmware Version FIR-v1738-B505321

Änderungshistorie

60B2h Torque Offset

Funktion

Offset für den Drehmomentsollwert in Promille. Wird in den Modi Cyclic Synchronous Position, Cyclic Synchronous Velocity, Cyclic Synchronous Torque und Takt-Richtungs-Modus berücksichtigt.

Objektbeschreibung

Index 60B2_h

Objektname Torque Offset
Object Code VARIABLE
Datentyp INTEGER16

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 0000_h

Firmware Version FIR-v1738-B505321

Änderungshistorie

60C1h Interpolation Data Record

Funktion

Dieses Objekt enthält die Sollposition in **benutzerdefinierten Einheiten** für den Interpolationsalgorithmus für den Betriebsmodus **Interpolated Position**.

Objektbeschreibung

Index 60C1_h

Objektname Interpolation Data Record

Object Code ARRAY

296

Datentyp INTEGER32

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1512

Änderungshistorie Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 01_h

Subindex 01_h

Name 1st Set-point
Datentyp INTEGER32
Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 00000000_h

Beschreibung

Der Wert wird zum nächsten Synchronisationszeitpunkt übernommen.

60C2h Interpolation Time Period

Funktion

Dieses Objekt enthält die Interpolationszeit.

Objektbeschreibung

Index 60C2_h

Objektname Interpolation Time Period

Object Code RECORD

Datentyp INTERPOLATION_TIME_PERIOD

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen

297

PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1426

Änderungshistorie

Wertebeschreibung

Subindex 00_h
Name Highest Sub-index Supported
Datentyp UNSIGNED8

Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 02_h

Subindex 01_h

Name Interpolation Time Period Value

Datentyp UNSIGNED8

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert 01_h

Subindex 02_h

Name Interpolation Time Index

Datentyp INTEGER8

Zugriff lesen/schreiben

PDO-Mapping nein

Zulässige Werte

Vorgabewert FD_h

Beschreibung

Die Subindizes haben folgende Funktionen:

- 01_h: Interpolationszeit.
- 02_h: Zehnerexponent der Interpolationszeit: muss den Wert -3 halten (entspricht der Zeitbasis in Millisekunden).

Es gilt dabei: Zykluszeit = Wert des $60C2_h$: 01_h * $10^{Wert des 60C2:02}$ Sekunden.

60C4h Interpolation Data Configuration

Funktion

Dieses Objekt bietet die maximale Puffergröße, gibt die konfigurierte Puffer-Organisation der interpolierten Daten an und bietet Objekte zur Definition der Größe des Datensatzes und zum Löschen des Puffers. Es wird zudem verwendet, um die Position weiterer Datenpunkte zu speichern.

Objektbeschreibung

Index 60C4_h

Objektname Interpolation Data Configuration

Object Code RECORD

Datentyp INTERPOLATION_DATA_CONFIGURATION

Speicherbar ja, Kategorie: Applikation

Zugriff nur lesen PDO-Mapping nein

Zulässige Werte Vorgabewert

Firmware Version FIR-v1512

Änderungshistorie Firmware Version FIR-v1540: Tabellen-Eintrag "Zugriff" bei Subindex

05 geändert von "lesen/schreiben" auf "nur schreiben".

Firmware Version FIR-v1540: Tabellen-Eintrag "Zugriff" bei Subindex

06 geändert von "lesen/schreiben" auf "nur schreiben".

Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

Firmware Version FIR-v1650-B472161: Tabellen-Eintrag "Zugriff" bei

Subindex 01 geändert von "lesen/schreiben" auf "nur lesen".

Wertebeschreibung

Subindex 00

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 06_h

Subindex 01_h

Name MaximumBufferSize
Datentyp UNSIGNED32
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert 00000001_h

Subindex	02 _h							
Name	ActualBufferSize							
Datentyp	UNSIGNED32							
Zugriff	lesen/schreiben							
PDO-Mapping	nein							
Zulässige Werte								
Vorgabewert	0000001 _h							
Subindex	03 _h							
Name	BufferOrganization							
Datentyp	UNSIGNED8							
Zugriff	lesen/schreiben							
PDO-Mapping	nein							
Zulässige Werte								
Vorgabewert	00 _h							
Subindex	04 _h							
Name	BufferPosition							
Datentyp	UNSIGNED16							
Zugriff	lesen/schreiben							
PDO-Mapping	nein							
Zulässige Werte								
Vorgabewert	0001 _h							
Subindex	05 _h							
Name	SizeOfDataRecord							
Datentyp	UNSIGNED8							
Zugriff	nur schreiben							
PDO-Mapping	nein							
Zulässige Werte								
Vorgabewert	04 _h							
Subindex	06 _h							
Name	BufferClear							
	UNSIGNED8							
Datentyp	nur schreiben							
Zugriff RDO Manning								
PDO-Mapping	nein							
Zulässige Werte	00							
Vorgabewert	00 _h							

Der Wert des Subindex 01_h enthält die maximale mögliche Anzahl der interpolierten Datensätze.

Der Wert des Subindex 02_h enthält die momentane Anzahl der interpolierten Datensätze.

Wenn Subindex 03_h " 00_h " ist, bedeutet das eine FIFO-Puffer-Organisation, wenn es " 01_h " ist, gibt es eine Ring-Puffer-Organisation an.

Der Wert des Subindex 04_h ist ohne Einheit und gibt den nächsten freien Puffer-Einstiegspunkt an.

Der Wert des Subindex 05_h wird in der Einheit "Byte" angegeben. Wenn der Wert "00_h" in den Subindex 06_h geschrieben wird, löscht es die eingegangenen Daten im Puffer, deaktiviert den Zugriff und löscht alle Interpolierten Datensätze. Wenn der Wert "01_h" in den Subindex 06_h geschrieben wird, aktiviert es den Zugriff auf den Eingangs-Puffer.

60C5h Max Acceleration

Funktion

Dieses Objekt enthält die maximal zulässige Beschleunigung für den Modus **Profile Position** und **Profile Velocity**.

Objektbeschreibung

Index	60C5 _h
Objektname	Max Acceleration
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00001388 _b
Firmware Version	FIR-v1426
Änderungshistorie	

60C6h Max Deceleration

Funktion

Dieses Objekt enthält die maximal zulässige Verzögerung (Bremsrampe) für den Modus **Profile Position** und **Profile Velocity**.

Objektbeschreibung

Index	60C6 _h
Objektname	Max Deceleration
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00001388 _h
Firmware Version	FIR-v1426
Änderungshistorie	

60E4h Additional Position Actual Value

Funktion

Enthält die aktuelle Istposition aller vorhandenen Rückführungen in benutzerdefinierten Einheiten.

Objektbeschreibung

Index	60E4 _h
Objektname	Additional Position Actual Value
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1738-B501312
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	03 _h
Subindex	01 _h - 03 _h
Name	Additional Position Actual Value #1 - #3
Datentyp	UNSIGNED32
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h

Beschreibung

Die Subindizes haben folgende Funktion:

- 00_h: Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- n_h:
 Subindex n enthält die aktuelle Istposition der entsprechenden Rückführung.

 Subindex 01_h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

60E5h Additional Velocity Actual Value

Funktion

Enthält die aktuelle Istgeschwindigkeit aller vorhandenen Rückführungen in **benutzerdefinierten Einheiten**.

Objektbeschreibung

Index	60E5 _h
Objektname	Additional Velocity Actual Value
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1738-B501312
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	03 _h
Subindex	01 _h - 03 _h
Subindex Name	01 _h - 03 _h Additional Velocity Actual Value #1 - #3
Name	Additional Velocity Actual Value #1 - #3
Name Datentyp	Additional Velocity Actual Value #1 - #3 UNSIGNED32

Beschreibung

Vorgabewert

Die Subindizes haben folgende Funktion:

• 00_h: Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.

0000000_h

n_h:
 Subindex n enthält die aktuelle Istgeschwindigkeit der entsprechenden Rückführung.

 Subindex 01_h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

303

60E6h Additional Position Encoder Resolution - Encoder Increments

Funktion

Mit diesem Objekt und mit **60EB**_h wird die Auflösung jeder vorhandenen Rückführung berechnet.

Objektbeschreibung

Index	60E6 _h
Objektname	Additional Position Encoder Resolution - Encoder Increments
Object Code	ARRAY
Datentyp	INTEGER32
Speicherbar	ja, Kategorie: Tuning
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1748-B538662
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	03 _h
Subindex	01 _h
Name	Additional Position Encoder Resolution - Encoder Increments Feedback Interface #1
Datentyp	INTEGER32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00320000 _h
Subindex	02 _h
Name	Additional Position Encoder Resolution - Encoder Increments Feedback Interface #2
Datentyp	INTEGER32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	

Vorgabewert	000000C8 _h
Subindex	03 _h
Name	Additional Position Encoder Resolution - Encoder Increments Feedback Interface #3
Datentyp	INTEGER32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	0000001 _h

Die Subindizes haben folgende Funktion:

- 00_h: Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- n_h:
 Subindex n enthält die Anzahl der Inkremente der entsprechenden Rückführung.

 Subindex 01_h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Auflösung der Rückführung "n" berechnet sich wie folgt:

Position Encoder Resolution = Encoder Increments (60E6_h:01_h) / Motor Revolutions (60EB_h:02_h)

60E8h Additional Gear Ratio - Motor Shaft Revolutions

Funktion

In diesem Objekt und in **60ED**_h können Sie die Getriebeübersetzung jeder vorhandenen Rückführung einstellen.

Objektbeschreibung

Index	60E8 _h
Objektname	Additional Gear Ratio - Motor Shaft Revolutions
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1738-B501312
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8

Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	03 _h
Subindex	01 _h - 03 _h
Name	Additional Gear Ratio - Motor Shaft Revolutions Feedback Interface #1 - #3
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	0000001 _h

Die Subindizes haben folgende Funktion:

- 00_h: Wert= "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- n_h: Subindex "n" enthält die Anzahl der Motorumdrehungen für die entsprechende Rückführung. Subindex 01_h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Getriebeübersetzung der Rückführung "n" berechnet sich wie folgt:

Gear Ratio = Motor Shaft Revolutions (60E8_h:n_h) / Driving Shaft Revolutions (**60ED**_h:n_h)

60E9h Additional Feed Constant - Feed

Funktion

In diesem Objekt und in **60EE**_h können Sie eine Vorschubkonstante für jede vorhandene Rückführung einstellen.

Objektbeschreibung

Index	60E9 _h
Objektname	Additional Feed Constant - Feed
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1738-B501312
Änderungshistorie	

Wertebeschreibung

Subindex	00 _h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 03_h

Subindex	01 _h - 03 _h
Name	Additional Feed Constant - Feed Feedback Interface #1 - #3
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	0000001 _h

Beschreibung

Die Subindizes haben folgende Funktion:

- 00_h: Wert= "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- n_h: Subindex "n" enthält den Vorschub in **benutzerdefinierten Einheiten** für die entsprechende Rückführung.

Subindex 01_h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Vorschubkonstante der Rückführung "n" berechnet sich wie folgt:

Feed Constant = Feed $(60E9_h:n_h)$ / Driving Shaft Revolutions $(60EE_h:n_h)$

60EBh Additional Position Encoder Resolution - Motor Revolutions

Funktion

Mit diesem Objekt und mit 60E6_h wird die Auflösung jeder vorhandenen Rückführung berechnet.

Objektbeschreibung

60EB _h
Additional Position Encoder Resolution - Motor Revolutions
ARRAY
UNSIGNED32
ja, Kategorie: Tuning
nur lesen
RX-PDO
FIR-v1738-B501312

307

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	03 _h
Subindex	01 _h - 03 _h
Subindex Name	01 _h - 03 _h Additional Position Encoder Resolution - Motor Revolutions Feedback Interface #1 - #3
	Additional Position Encoder Resolution - Motor Revolutions Feedback
Name	Additional Position Encoder Resolution - Motor Revolutions Feedback Interface #1 - #3
Name Datentyp	Additional Position Encoder Resolution - Motor Revolutions Feedback Interface #1 - #3 UNSIGNED32

Beschreibung

Vorgabewert

Die Subindizes haben folgende Funktion:

• 00_h: Wert="1" bis "n", wo "n" die Anzahl der vorhandenen Rückführungen.

0000001_h

n_h:
 Subindex n enthält die Anzahl der Motorumdrehungen der entsprechenden Rückführung.

 Subindex 01_h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Auflösung der Rückführung "n" berechnet sich wie folgt:

Position Encoder Resolution = Encoder Increments (60E6_h:01_h) / Motor Revolutions (60EB_h:02_h)

60EDh Additional Gear Ratio - Driving Shaft Revolutions

Funktion

In diesem Objekt und in **60E8**_h können Sie die Getriebeübersetzung jeder vorhandenen Rückführung einstellen.

Objektbeschreibung

Index	60ED _h
Objektname	Additional Gear Ratio - Driving Shaft Revolutions
Object Code	ARRAY
Datentyp	UNSIGNED32
Speicherbar	ja, Kategorie: Applikation
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	
Firmware Version	FIR-v1738-B501312

Änderungshistorie

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	03 _h
Subindex	01 _h - 03 _h
Name	Additional Gear Ratio - Driving Shaft Revolutions Feedback Interface #1 - #3
Datentyp	UNSIGNED32
Zugriff	lesen/schreiben
Zugriff PDO-Mapping	lesen/schreiben RX-PDO
-	

Beschreibung

Die Subindizes haben folgende Funktion:

- 00_h: Wert= "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- n_h: Subindex "n" enthält die Anzahl der Umdrehungen der Abtriebsachse für die entsprechende Rückführung.

Subindex 01_h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Getriebeübersetzung der Rückführung "n" berechnet sich wie folgt:

Gear Ratio = Motor Shaft Revolutions (60E8_h:n_h) / Driving Shaft Revolutions (60ED_h:n_h)

60EEh Additional Feed Constant - Driving Shaft Revolutions

Funktion

In diesem Objekt und in **60E9**_h können Sie eine Vorschubkonstante für jede vorhandene Rückführung einstellen.

Objektbeschreibung

60EE _h
Additional Feed Constant - Driving Shaft Revolutions
ARRAY
UNSIGNED32
ja, Kategorie: Applikation
nur lesen
RX-PDO

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1738-B501312

Änderungshistorie

Wertebeschreibung

Subindex	00 _h
Name	Highest Sub-index Supported
Datentyp	UNSIGNED8
Zugriff	nur lesen
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	03 _h

Subindex $01_{h} - 03_{h}$

Name Additional Feed Constant - Driving Shaft Revolutions Feedback

Interface #1 - #3

UNSIGNED32 Datentyp Zugriff lesen/schreiben **RX-PDO**

PDO-Mapping

Zulässige Werte

Vorgabewert

0000001_h

Beschreibung

Die Subindizes haben folgende Funktion:

- 00_h: Wert= "n", wo "n" die Anzahl der vorhandenen Rückführungen.
- n_h: Subindex "n" enthält die Anzahl der Umdrehungen der Abtriebsachse für die entsprechende Rückführung.

Subindex 01_h entspricht immer der ersten (und immer vorhandenen) Rückführung Sensorless.

Die Vorschubkonstante der Rückführung "n" berechnet sich wie folgt:

Feed Constant = Feed $(60E9_h:n_h)$ / Driving Shaft Revolutions $(60EE_h:n_h)$

60F2h Positioning Option Code

Funktion

Das Objekt beschreibt das Positionierverhalten im Profile Position Modus.

Objektbeschreibung

Index 60F2_h

Objektname Positioning Option Code

Object Code **VARIABLE** Datentyp **UNSIGNED16**

Speicherbar ja, Kategorie: Applikation

Zugriff lesen/schreiben

PDO-Mapping RX-PDO

Zulässige Werte

Vorgabewert 0001_h Firmware Version FIR-v1446

Änderungshistorie Firmware Version FIR-v1614: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

Beschreibung

Derzeit werden nur nachfolgende Bits unterstützt:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MS	RE	SERVED	[3]		IP OPT	ION [4]		RAD	O [2]	RRC	[2]	CIC	[2]	REL. (OPT. [2]

REL. OPT. (Relative Option)

Diese Bits bestimmen das Verhalten bei relativer Drehbewegung im "Profile Position" Modus, sollte Bit 6 des Kontrollwortes 6040_h = "1" gesetzt sein.

Bit 1	Bit 0	Definition
0	0	Positionsbewegungen werden relativ zu der vorherigen (intern absoluten) Zielposition ausgeführt (jeweils relativ zu 0 falls keine Zielpositon voran gegangen ist)
0	1	Positionsbewegungen werden relativ zum Vorgabewert (bzw. Ausgang) des Rampengenerators ausgeführt.
1	0	Positionsbewegungen werden relativ zur Istposition (Objekt 6064 _h) ausgeführt.
1	1	Reserviert

RRO (Request-Response Option)

Diese Bits bestimmen das Verhalten bei der Übergabe des Controlwords **6040**_h Bit 5 ("new setpoint") - die Steuerung übernimmt in diesem Fall die Freigabe des Bits selbständig. Damit fällt die Notwendigkeit weg, das Bit anschließend extern wieder auf "0" zu setzen. Nachdem das Bit von der Steuerung aus auf den Wert "0" gesetzt wurde, wird auch das Bit 12 ("setpoint acknowledgement") im Statusword **6041**_h auf den Wert "0" gesetzt.

Hinweis

Diese Optionen bringen die Steuerung dazu, das Objekt Controlword 6040_h zu modifizieren.

Bit 5	Bit 4	Definition
0	0	Die Funktionalität ist wie unter Setzen von Fahrbefehlen beschrieben.
0	1	Die Steuerung wird das Bit "new setpoint" frei geben, sobald die momentane Zielfahrt ihr Ziel erreicht hat.
1	0	Die Steuerung wird das Bit "new setpoint" frei geben, sobald es der Steuerung möglich ist.

Bit 5	Bit 4	Definition
1	1	Reserviert

RADO (Rotary Axis Direction Option)

Diese Bits bestimmen die Drehrichtung im "Profile Position" Modus.

Bit 7	Bit 6	Definition
0	0	Normale Positionierung ähnlich einer linearen Achse: Falls eines der "Position Range Limits" 607B _h :01 _h und 02 _h erreicht oder überschritten wird, wird der Vorgabewert automatisch an das andere Ende der Limits übertragen. Nur mit dieses Bitkombination ist eine Bewegung größer als der Modulo-Wert möglich.
0	1	Positionierung nur in negativer Richtung: falls die Zielposition größer als die aktuelle Position ist fährt die Achse über das "Min Position Range Limit" aus Objekt 607D _h :01 _h zu der Zielposition.
1	0	Positionierung nur in positiver Richtung: falls die Zielposition kleiner als die aktuelle Position ist fährt die Achse über das "Max Position Range Limit" aus Objekt 607D h:01h zu der Zielposition.
1	1	Positionierung mit dem kürzesten Weg zur Zielposition. Falls die Differenz zwischen aktueller Position und Zielposition in einem 360° System kleiner als 180° ist, fährt die Achse in positiver Richtung.

60F4h Following Error Actual Value

Funktion

Dieses Objekt enthält den aktuellen Schleppfehler in benutzerdefinierten Einheiten.

Objektbeschreibung

ladas	0054
Index	60F4 _h
Objektname	Following Error Actual Value
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h
Firmware Version	FIR-v1426
Änderungshistorie	

60F8h Max Slippage

Funktion

Definiert den maximal erlaubten Schlupffehler in **benutzerdefinierten Einheiten** symmetrisch zur **Sollgeschwindigkeit** im Modus **Profile Velocity**.

Objektbeschreibung

Index	60F8 _h
Objektname	Max Slippage
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00000190 _h
Firmware Version	FIR-v1738-B501312
Änderungshistorie	

Beschreibung

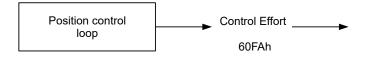
Weicht die Istgeschwindigkeit von der Sollgeschwindigkeit so stark ab, dass der Wert (Absolutbetrag) dieses Objekts überschritten wird, wird das Bit 13 im Objekt **6041**_h gesetzt. Die Abweichung muss länger andauern als die Zeit im Objekt **203F**_h.

Wird der Wert des 60F8_h auf "7FFFFFFF"_h gesetzt, wird die Schlupffehler-Überwachung abgeschaltet.

Im Objekt 3700_h kann eine Reaktion auf den Schlupffehler gesetzt werden. Wenn eine Reaktion definiert ist, wird auch ein Fehler im Objekt 1003_h eingetragen.

60FAh Control Effort

Funktion


Dieses Objekt beinhaltet die Korrekturgeschwindigkeit in **benutzerdefinierten Einheiten**, die vom Positionsregler dem Geschwindigkeitsregler zugeführt wird.

Objektbeschreibung

Index	60FA _h
Objektname	Control Effort
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h
Firmware Version	FIR-v1748-B531667
Änderungshistorie	

Der Positionsregler bildet aus der Differenz zwischen Ist- und Sollposition eine Korrukturgeschwindigkeit (in **benutzerdefinierten Einheiten**), die an den Geschwindigkeitsregler weitergeleitet wird. Dieser Korrekturwert hängt vom Proportionalanteil (**3210**_h:01_h) und Integralanteil (**3210**_h:02_h) des Positionsreglers ab. Siehe auch Kapitel **Closed Loop**.

60FCh Position Demand Internal Value

Funktion

Gibt die aktuelle Sollposition in Inkrementen an.

Objektbeschreibung

Index	60FC _h
Objektname	Position Demand Internal Value
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO
Zulässige Werte	
Vorgabewert	0000000 _h
Firmware Version	FIR-v1738-B501312
Änderungshistorie	

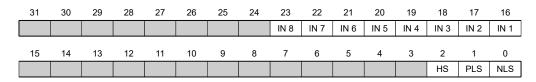
60FDh Digital Inputs

Funktion

Mit diesem Objekt können die Digitalen Eingänge des Motors gelesen werden.

Objektbeschreibung

Index	60FD _h
Objektname	Digital Inputs
Object Code	VARIABLE
Datentyp	UNSIGNED32
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	TX-PDO



Zulässige Werte

Vorgabewert 00000000_h Firmware Version FIR-v1426

Änderungshistorie

Beschreibung

NLS (Negative Limit Switch)

negativer Endschalter

PLS (Positive Limit Switch)

positiver Endschalter

HS (Home Switch)

Referenzschalter

IN n (Input n)

Eingang n - die Anzahl der verwendeten Bits ist abhängig von der jeweiligen Steuerung.

60FEh Digital Outputs

Funktion

Mit diesem Objekt können die **Digitalausgänge** des Motors geschrieben werden.

Objektbeschreibung

Index 60FE_h

Objektname Digital Outputs

Object Code ARRAY

Datentyp UNSIGNED32

Speicherbar ja, Kategorie: Applikation

Firmware Version FIR-v1426

Änderungshistorie Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von

"nein" auf "ja, Kategorie: Applikation".

Wertebeschreibung

Subindex 00_h

Name Highest Sub-index Supported

Datentyp UNSIGNED8
Zugriff nur lesen
PDO-Mapping nein

Zulässige Werte

Vorgabewert	01 _h						
Subindex	01 _h						
Name	Digital Outputs #1						
Datentyp	UNSIGNED32						
Zugriff	lesen/schreiben						
PDO-Mapping	RX-PDO						
Zulässige Werte							
Vorgabewert	0000000 _h						

Zum Schreiben der Ausgänge müssen noch die Einträge in Objekt **3250**_h, Subindex 02_h bis 05_h berücksichtigt werden.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
												OUT4	OUT3	OUT2	OUT1
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															BRK

BRK (Brake)

Bit für den Bremsenausgang (falls der Controller diese Funktion unterstützt).

OUT n (Output No n)

Bit für den jeweiligen digitalen Ausgang, die genaue Zahl der Digitalausgänge ist abhängig von der Steuerung.

60FFh Target Velocity

Funktion

In dieses Objekt wird die Zielgeschwindigkeit für den **Profile Velocity** und **Cyclic Synchronous Velocity**Mode in **benutzerdefinierten Einheiten** eingetragen.

Objektbeschreibung

Index	60FF _h
Objektname	Target Velocity
Object Code	VARIABLE
Datentyp	INTEGER32
Speicherbar	ja, Kategorie: Applikation
Zugriff	lesen/schreiben
PDO-Mapping	RX-PDO
Zulässige Werte	
Vorgabewert	00000000 _h
Firmware Version	FIR-v1426
Änderungshistorie	Firmware Version FIR-v1626: Eintrag "Speicherbar" geändert von "nein" auf "ja, Kategorie: Applikation".

6502h Supported Drive Modes

Funktion

Das Objekt beschreibt die unterstützten Betriebsmodi im Objekt 6060h.

Objektbeschreibung

Index 6502_h

Objektname Supported Drive Modes

Object Code VARIABLE
Datentyp UNSIGNED32

Speicherbar nein

Zugriff nur lesen

PDO-Mapping TX-PDO

Zulässige Werte

Vorgabewert 000003EF_h Firmware Version FIR-v1426

Änderungshistorie

Beschreibung

Ein gesetztes Bit gibt an, ob der jeweilige Modus unterstützt wird. Ist der Wert des Bits "0", wird der Modus nicht unterstützt.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						CST	CSV	CSP	IP	НМ		TQ	PV	VL	PP

PP

Profile Position Modus

٧L

Velocity Modus

PV

Profile Velocity Modus

TQ

Torque Modus

НМ

Homing Modus

ΙP

Interpolated Position Modus

CSP

Cyclic Synchronous Position Modus

CSV

Cyclic Synchronous Velocity Modus

CST

Cyclic Synchronous Torque Modus

6503h Drive Catalogue Number

Funktion

Enthält den Gerätenamen als Zeichenkette.

Objektbeschreibung

Index	6503 _h
Objektname	Drive Catalogue Number
Object Code	VARIABLE
Datentyp	VISIBLE_STRING
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	nein

Zulässige Werte

Vorgabewert

Firmware Version FIR-v1426

Änderungshistorie

6505h Http Drive Catalogue Address

Funktion

Dieses Objekt enthält die Web-Adresse des Herstellers als Zeichenkette.

Objektbeschreibung

Index	6505 _h
Objektname	Http Drive Catalogue Address
Object Code	VARIABLE
Datentyp	VISIBLE_STRING
Speicherbar	nein
Zugriff	nur lesen
PDO-Mapping	nein
Zulässige Werte	
Vorgabewert	http://www.nanotec.de
Firmware Version	FIR-v1426
Änderungshistorie	

11 Copyrights

11.1 Einführung

In der Nanotec Software sind Komponenten aus Produkten externer Software-Hersteller integriert. In diesem Kapitel finden Sie die Copyright-Informationen zu den verwendeten externen Software-Quellen.

11.2 **AES**

FIPS-197 compliant AES implementation

Based on XySSL: Copyright (C) 2006-2008 Christophe Devine

Copyright (C) 2009 Paul Bakker <polarssl_maintainer at polarssl dot org>

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution; or, the application vendor's website must provide a copy of this notice.
- Neither the names of PolarSSL or XySSL nor the names of its contributors may be used to endorse
 or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The AES block cipher was designed by Vincent Rijmen and Joan Daemen.

http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

11.3 MD5

MD5C.C - RSA Data Security, Inc., MD5 message-digest algorithm

Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.

License to copy and use this software is granted provided that it is identified as the "RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing this software or this function.

License is also granted to make and use derivative works provided that such works are identified as "derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm" in all material mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the suitability of this software for any particular purpose. It is provided "as is" without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this documentation and/or software.

11.4 uIP

Copyright (c) 2005, Swedish Institute of Computer Science

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- **1.** Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- **3.** Neither the name of the Institute nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

11.5 DHCP

Copyright (c) 2005, Swedish Institute of Computer Science

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- **2.** Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- **3.** Neither the name of the Institute nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

11.6 CMSIS DSP Software Library

Copyright (C) 2010 ARM Limited. All rights reserved.

11.7 FatFs

FatFs - FAT file system module include file R0.08 (C)ChaN, 2010

FatFs module is a generic FAT file system module for small embedded systems.

This is a free software that opened for education, research and commercial developments under license policy of following trems.

Copyright (C) 2010, ChaN, all right reserved.

The FatFs module is a free software and there is NO WARRANTY.

No restriction on use. You can use, modify and redistribute it for

personal, non-profit or commercial product UNDER YOUR RESPONSIBILITY.

Redistributions of source code must retain the above copyright notice.

11.8 Protothreads

Protothread class and macros for lightweight, stackless threads in C++.

This was "ported" to C++ from Adam Dunkels' protothreads C library at: http://www.sics.se/~adam/pt/

Originally ported for use by Hamilton Jet (www.hamiltonjet.co.nz) by Ben Hoyt, but stripped down for public release. See his blog entry about it for more information: http://blog.micropledge.com/2008/07/protothreads/

Original BSD-style license

Copyright (c) 2004-2005, Swedish Institute of Computer Science.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- **1.** Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- **3.** Neither the name of the Institute nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

This software is provided by the Institute and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the Institute or contributors be liable for any direct, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.

11.9 IWIP

Copyright (c) 2001-2004 Swedish Institute of Computer Science.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

- **1.** Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- **2.** Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
- **3.** The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This file is part of the IwIP TCP/IP stack.

Author: Adam Dunkels <adam@sics.se>